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Introduction

Purpose of the Course

The purpose of performing physics experiments in the laboratory is not only to reinforce the material

you learn in physics lecture, but also to enhance your understanding of how scientific knowledge actually

progresses. As you “perform” the experiments in this manual, you will encounter a messy reality quite

unlike the tidy exercises of your textbooks — a reality of inconclusive results, subtle equipment problems,

and experimental biases. It is our hope that this course will give you a taste of the difficulties and thrills

of real experimentation; and that you come away with a greater appreciation of how the laws of nature

are teased out of “real world” measurements.

In addition to engaging with the practicalities of the scientific method, another important skill that

we hope to instill is the “art” of scientific writing. At the conclusion of each experiment, you will be

expected to submit a lab report condensing the essential details for other readers to both understand,

and be able to recreate your experiment for verification if they wished. Being able to convey your

message in a simple, straightforward and efficient manner is a crucial skill regardless of the field you

choose to pursue in the future.

Course Outline and Policies

This course consists of two parts: a required fifty-minute lecture component at the beginning of each

experiment cycle, and a weekly three-hour session with a lab instructor. Many of the experiments in this

manual require a large number of measurements and prior work. The lecture is meant to prepare you for

each week’s lab works, thereby minimizing your time (and difficulties) in the lab session. For this reason,

half of the lecture is typically devoted to a review of the physics relevant to the experiment, while the

second half will describe the experiment itself. Particular emphasis is given to common practical issues

and how to solve them, as well as tips on how to perform data analysis.

You will attend the same lab section each week and, under the guidance of a lab instructor, you will

work on each experiment in a group. You will have a full week to write up a brief report detailing your

measurements and conclusions. You will submit completed reports online prior to the next lab session.

v
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The grade for the course is dominated by your weekly reports. In the laboratory, you may share

data with your lab partner and discuss all aspects of the experiment. However, you are not to share

anything beyond what is given to you, e.g. data points taken from a given figure, with other lab groups

in your own section or any other section. Moreover, the data analysis and interpretation that goes into

the lab report must be performed independent of your partner, and written in your own words. Failure

to comply with this rule is considered plagiarism.

You will also be graded on your preparation for and participation in the experiments. Read this

manual before coming to the labs, and even though we are not stepping in actual laboratories, please

follow laboratory etiquette: no eating, no drinking, and no cellphones use during the lab sessions. Should

you really need to do any of the above, like taking an urgent phone call, please do not disturb others

and kindly mute yourself.

Finally, if you miss an experiment, you are not allowed to make up the work at another time; we

do not accommodate make-up labs at another time. During the semester, you are allowed up to three

absences. Greater than this amount means automatic failure of the course. Among the three allowed

absences, at most two of them can be excused, which will not be counted towards the final grade. You

are responsible for obtaining a proper excuse and submitting it to your lab instructor prior to your lab

session. A third absence will automatically be a zero and will be dropped as the lowest grade.

Lab Report Format

General Remarks

Writing a lab report is the primary way your TA will know what you have done during the lab, how

well you understood the experiment, and whether or not you know how to process the results. This is

designed to serve as your first introduction to the world of scientific writing.

The formatting of your report should follow the ”IEEE Transactions on Magnetics” format (http:

//ieeeauthorcenter.ieee.org/wp-content/uploads/Trans_Magnetics_instructions.pdf), with

some simplifications that will be detailed below.

Your lab report should include, but not necessarily be limited to, the following features:

• Concision. There is no need to include huge excerpts from a textbook, dozens of irrelevant plots,

or a lengthy derivation (unless the lab manual specifically asks for it). You should consider 2-6

typed pages, including plots, to be the typical requirement for a lab report. There is a hard limit

of 6 pages for each lab report.

• Graphical representation of data: for example, a histogram or an xy plot. Plots must include error

bars on the data points, be clearly labeled, and be large and easy to read. Captions should follow

figures as a description of the plot.

http://ieeeauthorcenter.ieee.org/wp-content/uploads/Trans_Magnetics_instructions.pdf
http://ieeeauthorcenter.ieee.org/wp-content/uploads/Trans_Magnetics_instructions.pdf
http://ieeeauthorcenter.ieee.org/wp-content/uploads/Trans_Magnetics_instructions.pdf
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• Proper presentation of results. When you present your data, all measurements should contain an

estimate of the uncertainty and the units of measurement.

• A description of the statistical and systematic errors that affected your measurement. Again, this

description should be concise but well-developed.

• A discussion containing all relevant information and reasoning, allowing the reader to validate

your conclusion.

• Past, Present, Future Tense. You should use past tense to describe results you have done, results

from published papers should be described in present tense and only experiments you plan to do

in the future should be described in future tense.

Using a Logical Format

To provide a disclaimer, if you actually go on further in research and read other scientific papers, you

will notice that there is no “one” correct way to write a paper, and the style often depends on journal

requirements, field of research, author styles, etc. As you progress on after the course, you will develop

your own flavor for scientific writing, but as this is still an introductory course, the expectations will be

a little firmer to build a stronger foundation for you that you can build on in your future careers.

You may want to structure your report using the following framework:

1. Abstract (Optional): The abstract is usually the last section one writes, and acts as a short

paragraph summary of the contents of the entire report. A reader should be able to glean the

essentials of what the rest of the report is going to cover, from reading the abstract.

2. Introduction: The introduction should provide the background for a reader unfamiliar with the

field of the experiment, to jump into it. It should describe the scientific question you are looking

to probe in the experiment, and motivate why you (and the reader) should be interested in it.

Depending on the scenario, it can also be a good idea to very briefly mention the conclusion of

the report as well.

Any theoretical equations or derivations should be developed in the Introduction and Method

section. Anything that relies on a description of the particular setup should be presented in the

method section, while more general concepts may be described prior in the introduction.

3. Method: The method section should contain a summary of the experiment in your own words. You

are NOT to copy large chunks of the lab manual. A simple sketch of your apparatus accompanied

by a one or two-sentence description is often a good place to start.

A good method section will also contain a description of the important parameters measured in the

experiment and expectations for their relationships to one another (ie. what relationship, formula
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or model describes the system you are studying). Finally, you can mention some of the details of

your analysis in this section; e.g., “We perform a fit to the data of the form y = mx+ b...”

4. Results: You should present the results of your measurements and analysis (i.e., error propa-

gation) here. You don’t need to include lengthy tables; it is often preferable to include plots

and final values, with uncertainties. The plots, which must be clearly labeled, should speak for

themselves. However, you should always contextualize your figures and fit analysis. This section

should continue the narrative of the rest of the report.

Moreover, never forget that, whenever you are reporting an error associated with a certain quantity,

it must be clearly explained. If the uncertainty is associated with a raw data point, you should

justify why you assigned this uncertainty, often based on your specific measuring procedure. On

the other hand, if the uncertainty is associated with a derived quantity (e.g. from the slope

of a linear fit), then you should explain how you propagate it or derive it from a collection of

measurements.

5. Discussion: In this section, you should demonstrate your grasp of the experiment by discussing

the statistical significance of your measurements. Comment on whether or not your observations

differ significantly from your expectations. If so, you should consider whether or not this could

be a reasonable physical effect, or if in fact your experiment was affected by a systematic bias.

When discussing possible sources of bias, you should be as specific and quantitative as possible.

Simply writing that your observations were affected by vague factors such as “human error” or

“bad equipment” is not sufficient.

In many physics experiments, there are many sources of error, but a dominant error (the source

that contributes the most to the uncertainty) is often identified, and measures to address this

particular error source will often be suggested.

You should also discuss the precision of your observations — i.e., the size of the statistical fluc-

tuations in your answer — and think about how to improve it. (Do this even if your answer does

not differ significantly from expectations.)

6. Conclusion: In the conclusion, you quickly summarize for the reader your results, the preci-

sion and accuracy of these results relative to expectations, and the possibility of improving your

measurements.

This framework can help you organize your work, but remember, it is up to you to make the report

readable and transparent. In writing your report, you should still aim to present your information in an

effective manner, and you are welcome to explore tweaking this structure to do so.



Experiment 1

Velocity, Acceleration, and g

1.1 Purpose

The purpose of this experiment is to study the motion of an object undergoing uniform acceleration.

Using a “frictionless” air track and a computer, you can observe the one-dimensional uniform motion

of a metal rider. You will measure the constant velocity motion of the rider before and after it collides

with an elastic bumper, and then incline the air track to accurately measure g, the local acceleration

due to gravity.

1.2 Introduction

The motion of an object is typically described in terms of four quantities: time (t); position (r⃗); velocity

(v⃗); and acceleration (⃗a). Velocity is the rate of change of position with respect to time, and acceleration

is the rate of change of velocity.

v⃗ =
dr⃗

dt

a⃗ =
dv⃗

dt
=

d2r⃗

dt2

The quantities r⃗, v⃗, and a⃗ are vectors because motion can occur in more than one dimension. Moreover,

position and velocity are generally complicated functions of time. Even along one dimension such as x(t),

the motion of a body can be difficult to analyze, since a(t) may have some nontrivial time dependence.

However, it turns out that the time dependence of position and velocity simplify greatly when an object

undergoes constant acceleration a(t) = a:

v(t) =

∫
a dt = v0 + at

x(t) =

∫
v(t) dt = x0 + v0t+

1

2
at2

1
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These kinematic expressions were first deduced in the sixteenth century by Galileo, who systemati-

cally observed objects rolling down inclined planes. Starting the objects from rest, he found that the

displacement of a body down the plane is proportional to the square of the time it is in motion.

In this experiment, you will perform a related study of motion with constant velocity and constant

acceleration. Ordinarily, it is difficult to examine these kinds of motion with precision, since objects in

free fall tend to move too rapidly, and frictional forces tend to arise in most everyday situations. These

factors hinder a direct observation of the underlying physical principles of motion, and in fact this is one

of the reasons why these principles were poorly understood until Galileo’s careful experiments.

1.3 Experiment

In this lab, it will be possible to study motion in the absence of almost any friction by using a rider on

a “frictionless” air track. The air track has rows of small air jets running down its side, which support

the rider on a thin film of air and allow it to float just above the track. When the track is level and the

rider is given a slight push, it will move with constant velocity; when the track is slightly inclined, the

rider will experience a small acceleration due to the component of gravity that is parallel to the track.

The rider and air track are pictured in Fig. 1.1. To observe the motion of the rider, we need to make

accurate measurements of its position at regular intervals of time. For this we employ a sonar device

called a Sonic Ranger.

Figure 1.1: Setup of air track and PC.

The Sonic Ranger sends out discrete pulses of sound waves, which travel at some velocity vs to an

object on the track and are reflected back to the source. As reflected waves are detected by the Ranger,

their arrival times are read out to a PC, which calculates the distance x to the object based on the time

τ it takes the signal to make a round trip to and from the object:
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x =
vsτ

2
If a series of such measurements is made in rapid succession, then the computer can reconstruct

the position of the rider over some time interval, using this information to calculate quantities such as

the “instantaneous” velocity or acceleration of the rider as a function of time. The Sonic Ranger driver

software calculates the velocity v at time t using the formula

v(t) =
∆x

∆t
=

x(t+∆t)− x(t)

∆t
,

where ∆t is the time interval between each emitted pulse. We operate the Sonic Ranger at a frequency

f = 20 Hz, so that ∆t = 1/f = 0.05 s. As long the rate of change of v(t) is not too extreme, this ∆t

is small enough to give us a fairly accurate approximation to the instantaneous velocity.

1.4 Procedure

The procedure in this experiment is split into two parts: a setup segment in which you will familiarize

yourself with the equipment; and a measurement segment during which you will observe motion with

constant velocity and constant acceleration. While you should make yourself comfortable using the

air track, Sonic Ranger, and PC, try to spend the bulk of your time in the laboratory working on the

measurements.

Getting Started

When you begin the experiment, you will want to load the DataStudio file (ENG-VELOCITYLAB)

for this lab. To do so, you may have to log on to the computer with the user name student and the

password student.

You should now see the screen shown in Fig. 1.2, with two empty graphs displayed: position x (m)

and velocity v (m/s) versus time t (s). To the left of the plots is a summary window, which you can

use to browse through your data runs. The computer is now ready to take data.

To collect data, single click on the Start button. The plots will update and rescale automatically as

data arrive. Clicking the Stop button ends data acquisition. To begin collecting new data, simply click

the Start button again; the old trace will disappear (don’t worry; it is still accessible via the summary

window - click on Summary) and new data will plot in the two graphs.

NOTE: Please do NOT save your session in order that no change is made in the initial settings.

Testing the Sonic Ranger

The Sonic Ranger has two modes of operation, which are controlled by a switch on top of the Ranger

module:
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Figure 1.2: Main window of sonic ranger VELOCITYLAB software.

1. Person Mode: The Ranger emits a wide conic sonar beam for observing extended objects.

2. Cart Mode: The Ranger emits a narrow collimated beam, useful for observing a small object.

Before you start actual taking data, it is useful to familiarize yourself with the Sonic Ranger and the

DataStudio software by trying the following simple experiment:

• Switch the Ranger to Person Mode using the switch.

• Stand about two meters from the Ranger and have your partner point it at you.

• As your partner clicks Start, walk slowly toward the Ranger with constant speed.

• End the data collection after about ten seconds.

Inspect the graphs and see whether or not you were able to walk with constant velocity. You may

have to rescale the position and velocity axes to properly view the traces. In order to do this, sweep the

mouse over the y-axis until the icon changes from an arrow to a small curly line. Then hold down the
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left button and drag the mouse up or down to zoom in and out of the plot.

Q: Look at the position plot. Does x versus t look like a straight line, as you would expect for

motion with constant velocity? Does the velocity plot appear as you expect?

During the next five minutes or so, try out some of the other features of the software, such as curve

fitting. To perform an unweighted least squares fit to the data, drag the mouse over a portion of the

trace while holding down the left button. Some of the data points should now be highlighted in yellow.

Click on the Fit button at the top of the plot. (If the toolbar does not show the Fit button, you may

need to modify the Main Toolbar Settings under File→Options.) A listbox will open up displaying a

large set of functions: choose Linear, which fits the selected data to a function of the form y = mx+ b.

When you perform the fit, a textbox will pop up in the plot window, displaying values for the slope m,

intercept b, and uncertainties in both.

Note that you can view old data traces by left-clicking the Data button in the plot window and

selecting the name of the data run. All fits are listed under the Summary window.

Preparing the Sonic Ranger for Use with the Air Track

Care of the Rider and Air Track: Please take care when using the rider and track. DO NOT let the rider

sit on the track when the air is off, and DO NOT let the flag-side of the rider collide with the elastic

bumper, since both of these can cause the rider and air track to scrape against each other, permanently

damaging the equipment.

To conduct the rest of the experiment, you will need to set up the Sonic Ranger over the air track.

Simply follow these steps:

• Set the Ranger at the right end of the track, pointed horizontally and centered along the track.

• Switch the Ranger to Cart Mode.

• Turn on the air using the pump under the table.

• Gently place the rider onto the track.

• Start taking data. Check the Ranger alignment by giving the rider a small push up the track.

• The PC should plot the rider’s position smoothly throughout the length of the track. If you see

any jumps in the plot, you will need to align the Ranger more carefully.
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Leveling the Air Track

To study constant velocity motion, it is necessary to level the air track as much as possible. You will

find that when you first put the rider on the track, it will tend to drift in one direction or another. What

you want to do is level the track such that when you place the rider at any position along its length,

the rider stays more or less stationary.

To level the air track, use the two adjustable feet under the left side. The right foot is not adjustable,

but you can raise or lower it using sheets of paper (do not use the shims!). It may not be possible to

completely level the track, but try as best as you can to eliminate irregularities in the motion of the

rider. Sometimes the track might have bumps on its surface. One thing you can do to make sure that

it is aligned in the best possible way is to place the cart on different locations along the track. If its

motion is slow and in random directions, your air track is fairly horizontal.

A Note About Distances

The Sonic Ranger is unable to detect objects that are too close, because it requires the round trip travel

time τ of sonar pulses to have some minimum size. If τ is too small, the software cannot correctly

interpret the data. Therefore, always work with distances greater than 20 cm from the Sonic Ranger.

Figure 1.3: The measurement scale of the Sonic Ranger starts at its faceplate and increases toward the

left, opposite to the ruler on the air track.

Note also that the scale on the air track increases as you read toward the right. Since the Sonic

Ranger is aimed left, its scale increases toward the left, with the origin at the faceplate of the module,

not the right end of the track (see Fig 1.3). Keep these two scales separate in your work. Use the

readings from the Sonic Ranger for all experimental calculations, and use the scale on the air track only

for positioning the rider in the same place when you are repeating an experiment over several trials.
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Measurements

The data-taking segment of this experiment consists of two parts: motion with constant velocity, and

motion with constant acceleration.

Motion with Constant Velocity

Once you are satisfied that the track is sufficiently level, set the rider at the 150 cm mark. You will now

test the setup by quickly observing the constant velocity motion of the rider.

Observing the Rider: Begin collecting data, and then give the rider a gentle push toward the left.

Make sure that you are able to take data over a substantial portion of the return trip after it has

bounced off the elastic bumper at the left end, and also make sure that the position data is smooth and

without jumps.

Q: Is the velocity graph what you expected? The time scales of the two graphs are always the same, so

you should be able to see how the rate of change in the displacement graph corresponds to the veloc-

ity. How does motion with constant velocity on the air track compare to trying to walk with constant

velocity?

The Coefficient of Restitution: When two objects collide and bounce away from each other, they tend

to lose some of their energy in the collision, and the rebound velocity between them is therefore less

than the initial velocity between them. This is why objects that are dropped will sooner or later stop

bouncing. The elasticity of the collision can be described by e, the coefficient of restitution, which is

defined as the speed after the collision divided by the speed before the collision:

e =
|v⃗f |
|v⃗i|

A perfectly elastic collision would have a coefficient of restitution equal to one; an elastic “super”

ball is a good example of an object whose coefficient of restitution is close to one. You can calculate e

for the case of the rider colliding with the elastic bumper using the data you collect in this experiment.

• To measure e, place the rider at the 150 cm mark, click Start, and gently push the rider to the

left.

• Make sure the software cleanly plots the motion before and after the rider impacts the bumper.

• Using the DataStudio fitting routines, perform a linear fit to the x versus t trace using the data

before the collision. Record the slope vi and the uncertainty σvi on the slope obtained from the

fit.
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• Perform a linear fit to the x versus t trace using the data after the collision. Record the slope vf

and the uncertainty σvf obtained from the fit.

• Repeat this measurement at least ten times, calculating e for each trial. Try to impart roughly

the same gentle initial velocity vi to the cart each time.

Gravitational Acceleration

A small constant force can be applied to the rider by inclining the track slightly. The component of

gravity which acts on the rider parallel to the air track is equal to g sin θ, as indicated in Fig. 1.4. When

analyzing this motion, use a coordinate system whose x-axis is parallel to the surface of the track. In

this case, the constant acceleration of the rider ax is simply the component of g⃗ along this axis. By

measuring this acceleration, you can infer the local acceleration due to gravity g.

Figure 1.4: A convenient coordinate system for the measurement of g.

To incline the track, use a few of the metal shims provided to elevate the right side as shown in

Fig. 1.5. The shims can be used to elevate the right support by some height h. Since the distance

between the right and left supports is L = 1.0 m, the inclination angle of the track is given by

sin θ = h/L. Therefore, the acceleration of the rider can be written as linear function of h:

ax =
( g
L

)
h

NOTE: Even though some of the shims might indicate some thickness on them, it is always a good

habit to use a caliper to measure the total height yourself.
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Figure 1.5: Elevate the air track using the metal shims.

You will measure the acceleration of the rider ax as a function of 5 different heights h, using one,

two, three, four, and five stacked shims. A convenient and accurate way to measure ax for a given

height is described below:

• Place the rider at the 150 cm mark and release it.

• Just as the rider reaches the elastic bumper on the left, click Start.

• Take data as the rider returns to the right, slows, stops, and reverses direction. Click Stop just

as the rider reaches the left bumper a second time. Your position plot should look like a nice

concave-up parabola, and your velocity plot should be a long straight line (more or less).

• Note how far the rider travels up the slope after the first collision (l2). This is just the distance

between the bottom and the top of your parabola, and can be measured using Smart Tool. Also

measure the velocity right after the collision (v1). This can be found easily from the v vs. t plot.

• Perform a linear least squares fit on the velocity data, recording the slope of the plot (ax) and its

uncertainty.

• Also make a quadratic fit of the form x = At2 + Bt + C to the position data. How does the

quadratic coefficient A compare to ax?

• Repeat this measurement at least ten times for each height h. You don’t have to perform the

quadratic fit each time; just for a few trials. Don’t take too long for each measurement, or you

will run out of time! Record your measurements of l2 and v1 for each run, and also note the

position of the elastic bumper on the track.
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Summary of data:

• Constant velocity section:

– At least ten values for vi and vf , and corresponding coefficient of restitution, e.

• Gravitational acceleration section:

– At least ten values for ax, l2 and v1 for each of 5 shim thicknesses, h.

1.5 Analysis

The analysis section of this experiment is fairly straightforward; using a spreadsheet program like Excel,

you should complete it with little difficulty.

Coefficient of Restitution

During the constant velocity portion of the experiment, you collided the rider with an elastic bumper

and recorded at least ten values of vi and vf (plus uncertainties). You will now estimate coefficients of

restitution ej for each pair of (vi, vf ) measurements. This is largely an exercise in error propagation

and statistics, so you will find the average ē of the observations in two separate ways.

The Unweighted Mean

Proceed as follows:

• Calculate 10 values ej for each pair of measurements vi and vf using the equation

ej =

∣∣∣∣vfvi
∣∣∣∣

• For each of the 10 values of ej , calculate the uncertainty σej by propagating the errors σvi and

σvf . Assuming the errors in vi and vf are independent, σej is

σej =

√(
∂e

∂vi

)2

σ2
vi +

(
∂e

∂vf

)2

σ2
vf

When you evaluate the partial derivatives ∂e/∂vi and ∂e/∂vf , you will find that σej is just

a function of vi, vf , σvi , and σvf . Once you have the formula, you can use it directly in a

spreadsheet to find the 10 values of σej .
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• Calculate the unweighted mean ē and standard error on the mean σē. These expressions are given

by the formulae

ē =

∑N
j ej

N

σ =

√∑N
j (ej − ē)2

N − 1

σē =
σ√
N

Note how these expressions do not account for the errors σej in each of the individual data points.

The Weighted Mean

Now, calculate the weighted mean ēw and its standard error σēw using the expressions

ēw =

∑
j ej/σ

2
ej∑

j 1/σ
2
ej

σēw =

∑
j

1

σ2
ej

−1/2

These equations do account for the individual errors in each measurement, making data points with

large σej less important in the sum. Comment on your results. For example, consider the following

questions:

• How do ēw and its error σēw compare to ē and σē?

• Do you see any evidence that the coefficient of restitution depends on the initial velocity of the

glider? (Hint: try plotting e against vi.) Does this result agree with your expectations? Why?

• When calculating σe from σvi and σvf , you should treat the errors as though they are independent.

However, are the uncertainties in vi and vf truly independent? Or do you think small errors in vi

affect vf? Justify your answer.

• Do your values for e appear to be randomly distributed about ē, or ēw?

Gravitational Acceleration

For a set of air track heights h, you have a collection of acceleration values ax obtained from linear fits

of v versus t. Using the measurements of ax as a function of h, you will estimate g. Proceed as follows:

• For each height h, you have 10 measurements of ax. Find the unweighted mean āx of these values

and the unweighted standard error on this mean σāx .
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• You should now have 5 values of h, 5 values of āx, and 5 uncertainties on these means σāx . Plot

the averages āx as a function of h, and include error bars on the points (given by σāx).

• Draw a best fit line of the form āx = mh+ b in the plot.

• Using Mathematica or Python, calculate the slope m, intercept b, and the standard errors in both.

• Use the slope m to estimate g; remember that we expect ax = (g/L)h. Use the standard error

in the slope (from the output of your linear fit) to find σg.

Once you have completed the calculation of g, consider the following questions:

• Does your measurement of g agree with the nominal value g = 9.80 m/s2? If not, how significant

is the discrepancy? That is, how many σ’s away from the nominal value is your result? Can this

be explained by natural variation in g?

• Is the intercept b = 0 within experimental error, or is there a statistically significant difference?

What might cause this?

• Do you expect steeper slopes to be more accurate than shallower slopes for extracting g? Why?

Are your results consistent with this?

• Can you think of any systematic effects that may have been at work in this experiment? Do you

see any evidence for their impact?

• What limits the precision of this way of measuring g? Why is a pendulum measurement more

precise? How could you increase the precision of your result — that is, decrease the size of σg?

Estimating Friction Losses

In this section you will investigate the effects of friction, using your measurements of l2 and v1 from the

gravity section of the experiment. Conservation of energy without friction implies

1

2
mv21 = mgl2 sin θ

For some of the trials compute the following quantity1:

∆ =
v21

2axl2
− 1

Statistical deviations of this from zero will indicate that there is energy loss due to friction. You do not

have to compute it for every trial, just for a small sample (two or three for each height).

1This quantity is closely related to the coefficient of kinetic friction µf .



Experiment 2

Projectile Motion and Conservation of

Energy

2.1 Purpose

In this experiment, you will use the trajectory equations of a body in two-dimensional free fall to predict

where a projectile lands. The initial velocity of the projectile is determined by applying the conservation

of energy for the projectile as it drops through a long inclined tube. You will test your prediction with

repeated trials and a statistical analysis of the spread in the landing spots.

Preparation for this Experiment

NOTE: You must prepare some derivations at home; otherwise, you may have trouble finishing the lab

in the time given.

2.2 Introduction

This lab should demonstrate the predictive power of applying physical principles correctly, show that

predictions correspond to something in the “real world,” and provide insight about deciding what is

important in making a measurement.

In order to understand the procedure used in this experiment, it is necessary to review some basics

of energy, energy conservation, and projectile motion. Make sure you read and understand the following

sections before coming to the laboratory.

13
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Energy Conservation and Frictional Losses

One of the most fundamental principles of physics requires that total energy be conserved in all physical

processes. Of course, there are many different kinds of energy, including mechanical energy, heat,

chemical energy, and mass1. Energy conservation implies that one kind of energy can transform into

another — for example, an engine converts the heat energy released by burning fuel into mechanical

energy. So long as all types of energy are accounted for, the total energy inside a closed system is a

fixed constant.

Mechanical Energy

Mechanical energy is a general term that refers to the various types of kinetic energy (translational and

rotational) and gravitational potential energy that an object can have. The kinetic energy of a point

particle of mass m moving with velocity v is given by the well-known equation K = 1/2 mv2.

In this experiment, we deal with a rolling ball, an extended object that not only translates but also

rotates about its own center of mass. A proper estimate of its kinetic energy requires us to account for

both types of motion:

K = Ktrans +Krot

=
1

2
mv2 +

1

2
Iω2

In this expression, m is the total mass of the object, v is now the translational velocity of the center

of mass, I is the moment of inertia, and ω is the angular velocity of the rotation. For a solid sphere

of radius R rotating about its center of mass, I = 2/5mR2. If the sphere rolls without slipping, then

ω = v/R. Therefore, the total kinetic energy of a sphere that rolls without slipping is

K =
1

2
mv2 +

1

2

(
2

5
mR2

)( v

R

)2
=

1

2
mv2 +

1

5
mv2

=
7

10
mv2

In contrast to K, the gravitational potential energy U of an extended object is still quite simple.

Near the Earth’s surface, if a body’s center of mass is some height h above an arbitrary level chosen

such that U = 0, its gravitational potential energy is U = mgh. This means that when an object drops

by a vertical height ∆h = h2−h1, the change in potential energy is ∆U = mg∆h < 0 (since h2 < h1).

1This is the content of Einstein’s famous formula E = mc2.
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Estimating Losses Due to Friction

In an ideal world, every mechanical process would only involve exchanges of kinetic and potential energy.

Conservation of energy (∆E = ∆K + ∆U = 0) in such a system would simply mean that losses in

potential energy are matched by gains in kinetic energy:

∆K = −∆U

Unfortunately, all mechanical processes are affected by friction, which dissipates mechanical energy as

heat. A proper expression of energy conservation should include the work done by friction Wf , so that

we obtain ∆E = ∆K +∆U −Wf = 0, or

∆K = Wf −∆U

Estimation of Wf from the frictional force alone is not possible, so in this experiment, you will use

a simple technique to estimate the energy lost to frictional heating. Your task will be to drop spheres

through an inclined launch tube; refer to Fig. 2.1 as you read this procedure.

To find the energy lost to friction, one determines by trial and error the vertical distance ∆h′ that

the ball traverses through the track such that it just comes to rest at the far end of the track when

released from the top. You should recognize that the loss in potential energy mg∆h′ must equal the

energy lost to friction (since ∆K = 0). If you assume that the same amount of energy is lost to friction

when the track is tilted more steeply, you can use Wf = mg∆h′ for all tilting angles. It follows that

∆K = Wf −∆U

= mg∆h′ −mg∆h

= mg(∆h′ −∆h)

NOTE: The force of friction depends on the material composing the ball, so you have to measure the

frictional loss separately for each sphere you use!

Parabolic Trajectory

The motion of a mass launched into free fall with initial velocity v0 at an angle θ relative to the horizontal

can be treated easiest by evaluating the horizontal (x) and vertical (y) position in terms of the time (t)

as two independent motions:

x(t) = x0 + v0,xt

y(t) = y0 + v0,yt−
1

2
gt2

The initial velocity v0 is estimated using energy conservation. You can break the velocity vector down

into its x and y components using the geometry of the setup. Note that the ball only has one force,

gravity, which acts on it during free fall; we neglect the effect of air resistance in this derivation.
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2.3 Experiment

Fig. 2.1 shows the apparatus used in this experiment. A ball is released into a tube at the release point,

rolls through the tube and emerges into space at the launch point. You measure the parameters shown

explicitly in the figure, and the additional parameter, ∆h′, which is used to estimate friction losses.

Figure 2.1: Launch tube used in this experiment, with relevant lengths labeled.

Prediction of Position

Before you do the experiment, you should derive at home a set of equations which provide a prediction

for the x-position where the ball hits the ground (y = 0). This expression should depend only on

measured parameters shown in the figure: h1, h2, h3, D, L, as well as the value of ∆h′; your final

equation should not depend on parameters that you do not directly measure, such as v0 and θ.

Rather than derive a single complicated formula for x in terms of symbols for all the preliminary

measurements, it will be more convenient to calculate, in sequence, several intermediate quantities and

then combine these to find x. In other words, it is advisable to break up the entire problem into several

smaller ones:

1. Find v0 using the conservation of total mechanical energy and the energy lost to friction.
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2. Find v0,x and v0,y, the horizontal and vertical components of v0, by referring to the geometry of

the final section of the track.

3. Find t, the time the ball is in the air, by considering the vertical motion involving v0,y and h2

alone.

4. Finally, use t to find the expected range x.

If you want to check that your derived formula for the position x is correct, try plugging in the following

data:

h1 = 124.3 cm h3 = 110.0 cm

h′1 = 122.7 cm D = 27.7 cm

h2 = 119.3 cm L = 29.2 cm

h′2 = 120.5 cm

The projectile should hit the ground at x = 30.5 cm.

Comparing Predictions with Observation

Using your derivation, for any configuration of the tube, you should be able to predict the x position

where a ball hits the floor. The goal of the lab is to compare the measured position with the prediction

by performing repeated measurements. This data will permit a measure of the spread, or uncertainty,

and the reproducibility of the results.

2.4 Procedure

If you want to clean the tube before you start, there should be a swab on a string available. The

procedure you should follow is described in detail below.

Estimating Friction Predicting Landing Position

• Choose your first ball as the heavy metal ball.

• Adjust the screw such that the ball, when released at the release point, just makes it to the launch

point before reversing direction. Record h′1 and h′2. (You only have to do this once for each ball.)

• Increase h1 with the adjustment screw so that the ball will become airborne. Make sure that

∆h = h2 − h1 is at least twice as big as ∆h′ = h′2 − h′1.

• Measure all the required quantities and predict where the ball will hit the floor. Use the plumb

bobs to observe the alignment of the launch tube. Place a coin to test the predicted position.
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Testing Prediction

At this stage, you can start to quantitatively compare the predicted landing position with actual trials.

• Do not change the launch tube settings that you just used.

• Place a sheet of white paper on the floor centered at the predicted location and place a piece of

carbon paper on it. Tape them to the floor.

• On the sheet, draw a crosshairs (an x and z axis) where you expect the ball to land.

• Roll the metal ball at least 20 times; you should obtain 20 points marked on the white paper.

• Clearly label this sheet with the ball you used, the geometry of the apparatus (h1, h2, h3, D, L),

and the number of trials.

When you are finished with this first trial, alter the geometry of the setup and start the procedure

again from the beginning. Do at least one other set of trials with the metal ball, remembering to keep

∆h ≥ 2∆h′. Then repeat the procedure using the plastic ball, with at least two separate settings for

the setup. Don’t forget that ∆h′ is different for the metal and plastic spheres, so you need to remeasure

this quantity when you start using the plastic sphere!

Before you begin your repeated trials, qualitatively test your prediction of the landing position.

After completing at least two sets of trials for at least two spheres, you may leave the laboratory

and analyze the data at home.

Summary of data:

• Friction losses:

– h′1 and h′2 for metal and plastic spheres

• Prediction:

– h1, h2, h3, D and L for two sets of trials, for each sphere
– Quantitative measurement of spread in landing positions for each sphere.

2.5 Analysis: Measurement of Spread in Landing Positions

The analysis of the projectile data requires two steps. First you must estimate the expected horizontal

landing position x of each sphere for each setup you used with the launch tube. The resulting number

needs to include an uncertainty, so you must propagate the uncertainties in your measurements of h1,

h2, h3, L, and D. Call this prediction and its uncertainty xp ± σp.
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Second, you need to calculate the mean positions observed along the direction of motion (x̄) and

perpendicular to the direction of motion (z̄) observed during each set of trials for each sphere. These

numbers should include experimental uncertainties, which you can easily calculate using your favorite

spreadsheet program.

• Calculate the means using the usual formulae:

x̄ =
1

N

N∑
i=1

xi, z̄ =
1

N

N∑
i=1

zi

• Calculate the standard deviations of the data:

σx =

√∑
(xi − x̄)2

N − 1
, σz =

√∑
(zi − z̄)2

N − 1

• Calculate the standard deviations of the means:

σx̄ = σx/
√
N, σz̄ = σz/

√
N

Report these results as x̄± σx̄ and z̄ ± σz̄.

To better visualize your data, calculate the differences between your actual data points (the spots

from the carbon sheet) and the expected position (the crosshairs) for each trial. Plot these differences

in histograms, separately for each ball. Create separate histograms for the x and z directions of your

measurements.

As you write your report and comment on the results, consider the following questions:

• Do the predicted and observed mean positions xp and x̄ agree within uncertainties?

• Do your data appear to be randomly distributed about the expected value? That is, do the

histograms “look like” Gaussian curves?

• Do you observe any evidence for systematic errors in the data, i.e., an overall shift in the points

from the expected landing site? If so, what could have caused these errors?

• How does the spread in along the x direction compare to the spread along z for each set of trials?

Explain these results.

• Is the spread in the data about the same for the metal and plastic spheres? Should it be?

• What alterations can you make to the experiment to decrease the spread in the data?

• How do your results for the plastic sphere change if you assume it is hollow? (Hint: the moment

of inertia of a hollow sphere is not I = 2/5mR2.)
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• How accurate is your measurement of friction? What factors limit its accuracy?

• Estimate the size of the frictional force in the tube, assuming (incorrectly) that it is constant over

the length of the tube, i.e. that W = ff l. Explain how you estimated the length of the tube l and

how accurate you think your estimate is. Based on this, do you expect friction to be significant?

(Hint: compare to the magnitude of other forces acting.)

• How do you expect your estimate to change if you consider friction to vary over the tube? What

determines the magnitude of the frictional force? Where do you expect it to be maximal? Why?

• What are some implicit assumptions you are making when you use the theoretically derived equa-

tion?



Experiment 3

Magnetic Fields

3.1 Purpose

You will determine the strength of the magnetic field in the gap of an electromagnet by measuring the

force on a current-carrying rod, and by observing the induced EMF in a closed loop.

• CAUTION: Always reduce the current through the electromagnet to zero before opening the

circuit of the magnet coils.

• CAUTION: Remove wrist watches before placing hands near the magnet gaps.

• CAUTION: Do NOT place your laptop near the magnets!

3.2 Introduction

There are several techniques we can use to measure the strength of a magnetic field B⃗ in some region.

One technique exploits the fact that a current-carrying conductor will feel a deflection force in the

presence of a magnetic field; another uses Faraday’s Law and observes the EMF induced by a changing

magnetic field in a closed loop. In this experiment you will employ both of them.

Force on a Current-Carrying Conductor

Consider a wire or conducting rod of length L⃗ carrying a current i. The direction of the vector L⃗

indicates the flow of the current. If this wire is placed into a magnetic field B⃗, it will experience a

deflecting force

F⃗ = iL⃗× B⃗ (3.1)

If the direction of the current i and the field B⃗ are perpendicular, as in Fig. 3.1, then the conductor will

experience a vertical force F = iLB.

21
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Figure 3.1: Force on a current-carrying wire.

If one knows the current i in the rod and the magnitude of the deflection force F , it is possible to

infer the strength of the magnetic field B by observing this deflection.

EMF Induced in a Moving Coil

Suppose you place a closed conducting loop of area A in a region with some magnetic field B⃗. The flux

of field lines through the loop is given by

Φ =

∫
B⃗ · n̂dA

If the plane of the loop and B⃗ are perpendicular, the flux reduces to the simple expression Φ = BA.

Faraday’s Law tells us that if the flux changes as a function of time — e.g., B⃗ is a function of time, or

the loop area moves with respect to the field — then an EMF

ε = −dΦ

dt
= − d

dt
(BA)

will be induced across the loop. It is useful to think of the EMF as a voltage, rather than a battery,

that drives a current i through the loop. This current can be measured, and used to infer ε. Note that

if we replace the single loop by a coil consisting of N tightly wound loops of equal area, then the EMF

for the coil becomes

ε = −N
dΦ

dt
(3.2)

A measurement of ε can, under the right circumstances, yield the strength of the magnetic field.

3.3 Experiment

There are two parts to this experiment; first, you will use balanced forces to find the magnetic field of

an electromagnet, and second, you will use an induced emf to measure the magnetic field produced by

a magnet.
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Measurement of B using the Current Balance

In the first part of the experiment, you will use the magnetic force on a horizontal rod carrying current

i to estimate the strength of the electromagnet. The basic experimental setup is shown in Fig. 3.2.

The magnetic field you will be measuring is provided by an electromagnet, which uses the fact that a

current produces a magnetic field. The strength of the magnetic field is proportional to the amount of

current flowing, with a constant of proportionality determined by its geometry. In this experiment, a

large, horizontal magnetic field B is produced in the air gap of a C-shaped electromagnet, which has

many coils of wire wrapped around an iron core. The current, I, is supplied by an adjustable low voltage

power supply.

Figure 3.2: Setup of the wire, magnet, and balance for force measurement.

Given a B field in the electromagnet, one can increase or decrease the force on the rod by adjusting

the current i in the rod. The size of the force is estimated using a balance: a set of weights can be used

to bring the balance to equilibrium. Once in equilibrium, the force of gravity on the weights, F = mg,

must equal the magnetic force on the conducting rod.

Measurement of B using Induction

An alternative method of measuring B is to use Faraday’s law. Figure 3.3 shows the initial setup for

the experiment. A rotary motion sensor is attached to the end of the cross-rod. It also acts as a pivot

for the induction wand. The induction wand is a rigid pendulum with coil at its end that will swing



24 EXPERIMENT 3. MAGNETIC FIELDS

Motion sensor

Induction coil

Magnet  
generating B

Magnetic field 
sensor

Voltage sensor

Figure 3.3: Experimental apparatus.

through a variable gap magnet. When the coil is suddenly inserted into (or removed from) the field, the

flux through the coil rapidly changes, inducing an EMF ε. The EMF will drive a current i through the

coil while dΦ/dt is nonzero. This can be easily measured. If we are interested in the net average result

over an interval of time ∆t, then Faraday’s formula tells us that

ε = −NA
∆B

∆t
(3.3)

where N is the number of turns in the coil, A its area and ∆B the net change in magnetic field.

In this particular setup, the coil has N = 200 turns and its outer diameter is d = 3.1 cm. When

the coil passes the gap in between the magnet, it goes from a region of zero magnetic field (outside the

gap) to a region of non-zero field (center of the gap). An EMF is therefore induced on the coil and it

also follows that the net change in magnetic field ∆B (equation (3.3)) is exactly the field generated by

the magnet.

3.4 Procedure

Current Balance

You will begin the experiment by measuring the force exerted on the conducting rod by the electromag-

net. First, connect the electromagnet to the large power supply, using the banana plugs provided. (Be



3.4. PROCEDURE 25

sure to follow any instructions that are posted on the power supply.) This will provide the current I

generating the magnetic field. The current in the rod, i, is supplied by an HP E3610A power supply,

which you will use in constant current mode.

• Measure L, the length of the conducting rod, using the calipers provided.

• Turn the adjustment knob on the left of the balance to lower the balance arm onto its knife

edge. Your balance may need adjusting, by turning the screw on the threaded rod, so that it is

horizontal. If there is not already a mark indicating the horizontal position, you may draw one on

the mirror.

• To use the power supply of the current rod in constant current mode, begin with the current dial

turned all the way down (counterclockwise) and the voltage dial turned all the way up (clockwise).

• Set the range to 3 A (button out).

• Connect leads wires from the balance arm to the + and − terminals.

You can now set the current to the desired level, but note that the digital meters on the power supply

show the actual voltage and current being supplied, so you will not normally see any current unless you

have a complete circuit, i.e. the leads are connected and the balance is resting on its knife edge. If

you want to set the current level without closing the circuit, you can hold in the CC Set button while

you turn the current dial. Once you close the circuit, the voltage adjusts automatically to maintain the

constant current level, and the CC (Constant Current) indicator light should be on.

At this point, you are ready to begin the actual measurements:

• Set the current I through the electromagnet at 4 A.

• When the current is set, the rod in between the electromagnet’s poles should be pulled downward.

If the rod moves upward instead, reduce the current on the large power supply to zero, flip the

direction of the current through the rod, then turn the current back to 4 A.

• For at least five values of the balance current i, determine the force F = mg needed to bring the

balance to equilibrium. NOTE: it is easier to make the final adjustment on i once weights have

already been selected for the approximate current value. Change i slowly, to avoid oscillations of

the balance.

• Use the mirror behind the balance to line up the pointer and its image as you balance the rod.

• Repeat this measurement for other values of I, e.g., 3.5 A, 3 A, 2.5 A, and 2 A.

• Be sure to record uncertainties for every measurement.
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Induced EMF

CAUTION: Do not place the magnet very close to the computer.

After you set up the apparatus, this part of the experiment will consist of two steps: measurement

of the magnetic field ∆B generated by the magnet and measurement of the EMF ε induced on the

swinging coil. This will be done with the help of DataStudio.

Most likely, the apparatus will be ready for data taking and you will not have to do anything. If that

is not the case, set it up following these steps:

• Adjust the height of the stand so that the coil is in the middle of the magnet. Adjust the gap

between the magnet poles to about 1 inch so the coil will be close enough to the magnet poles

and will be able to pass through the magnet without hitting the pole plates.

• Plug the voltage sensor banana plugs into the banana jacks of the induction wand. Connect the

voltage sensor to the USB link that is plugged into the computer. Make sure that the voltage

sensor cables will not exert any torque on the induction wand as it swings. If it does, it helps to

hold the wires up while recording data.

• Attach the rotary motion sensor and the magnetic field sensor to the computer. Notice that the

magnetic field sensor’s probe has 2 white dots: one for sensing perpendicular magnetic field lines

and the other for axial field lines. You will use the perpendicular sensing element of the sensor.

Note the direction of the arrow. NOTE: The sensor is set to measure the field in units of Gauss

(G). You will have to convert it into Tesla (T). Remember that 1 G = 10−4 T.

• Open the “Induced EMF” DataDtudio file on the computer. Make sure that the sampling rate

setting (which can be found in the “Setup” menu) shows the following:

Magnetic field: 1 Hz; Angle: 10 Hz; Voltage: 500 Hz or 1000 Hz.

Once this is done you can proceed and measure the magnetic field ∆B as follows:

• Pull the magnet out of the setup so that you can place the magnetic field sensor in between

the pole plates. Hold the magnetic field sensor such that the perpendicular sensing element is

along the magnet’s field lines in between the magnet and is at the center of the pole plates. See

figure 3.4.

• Click “Start” to measure the maximum magnetic field strength between the poles. Hold the sensor

in the center for around 6 seconds. Click “Stop”. You will see a straight line in the magnetic

field panel. Record the mean value of the measured magnetic field. From the sign of the recorded

value determine the direction of the magnetic field between the pole plates. Note which pole of

the magnet is the North pole.



3.4. PROCEDURE 27

Figure 3.4: Measuring magnetic field in between the pole plates.

• Move the probe 1 cm away from the center of the pole plates and repeat the measurement of

the magnetic field at this new spot. Now move it 2 cm away from the center and repeat the

measurement. Compare all three measurements. Note that the value of ∆B that you will have

to use during data analysis is the one obtained from the center of the magnet since that is where

the coil goes through.

Now you know what value of ∆B to use in equations (3.3) you can go to the next step and measure

ε and ∆t. In particular, you will have to do the following:

• Put the magnet back in the setup as shown in figure 3.3. Make sure that the coil can pass through

the gap without hitting the pole plates.

• Pull the wand back and click “Start”. Release the wand allowing it to swing through the magnet

once and then click “Stop”.

• Click and drag the mouse all over the first peak to highlight the first peak and find the average

voltage by getting the Mean of the highlighted part of the graph. This will be your average

ε. Note that before the wand passes through the pole plates there may be very small voltage

readings. Make sure to exclude those data points as you select the peak, and try to select the

same amount of data points on both sides of the peak.

• Use the Smart Tool to determine the difference in time (∆t) from the beginning to the end (width)

of the first peak.
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3.5 Analysis

Current Balance

• Using the current balance data, plot iL, the product of the rod current and rod length, against

the force values F = mg.

• Using a linear least squares analysis, determine the slope of the plot and its corresponding uncer-

tainty. From there find B ± σB. This is the magnitude of the electromagnet’s field.

• Repeat these steps for all the values of I that you set in the electromagnet.

• Plot all of the data on the same set of axes, and extract the slope B for each setting of I.

• In another graph, plot B against I, and draw a line or curve of best fit, commenting on the shape.

Is it what you expect?

• You have considered only the horizontal part of the current-carrying rod in your analysis. What

effect does the vertical part (which is also within the magnetic field) have?

Induced EMF

• Given the experimental values of ∆B and ∆t, compute the EMF ε. Compare the computed value

with the one measured experimentally. Are they compatible within errors?

• Identify on the graph where the coil is entering the magnet and where the coil is leaving the

magnet.

• Why is the sign of the EMF of the second peak opposite to the sign of the first peak?

• Why is the EMF zero when the coil is passing through the exact center of the magnet?



Experiment 4

e/m of the Electron

4.1 Purpose

In this experiment, you will measure the charge to mass ratio of the electron, a quantity known as e/m.

The procedure demonstrates how we can use fairly basic equipment to observe one of the fundamental

constituents of matter.

4.2 Introduction

The “discovery” of the electron by J.J. Thomson in 1897 refers to the experiment in which it was shown

that “cathode rays” behave as beams of particles, all of which have the same ratio of charge to mass,

e/m. At the time, Thomson correctly recognized that he had isolated a fundamental particle of nature;

for his work, he won the Nobel Prize in 1906.

Thomson’s experiment, and the one we will conduct today, is a simple application of the motion of

a charged particle in a magnetic field. Recall that if a particle of charge e moves with velocity v⃗ into a

region with some magnetic field B⃗, it will feel a magnetic deflection force

F⃗mag = ev⃗ × B⃗ (4.1)

Note the similarities between this expression and the magnetic force on a current-carrying wire:

F⃗wire = iL⃗ × B⃗. This equation is in fact just a generalization of the force on a point charge, since a

current is nothing more than a flow of charge.

Consider the special case where v⃗ and B⃗ are perpendicular, and the magnitude of B⃗ is uniform. As

shown in Fig. 4.1, the force F⃗mag is directed in such a way that the particle moves in a circle of radius

r, with the plane of the circle perpendicular to B⃗.

Since the particle moves in uniform circular motion, the magnetic force is a centripetal force,

F⃗c = m
v2

r
(4.2)

29
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mag

mag

mag

Figure 4.1: Deflection of a charged particle in a uniform field B⃗ directed into the page.

We can consider equations (4.1) and (4.2) for the special case where v⃗ and B⃗ are perpendicular, and the

magnitude of B⃗ is uniform. They suggest that, in principle, if we could measure the incoming velocity

v of the particle, we could use this result to directly measure the charge to mass ratio e/m.

In practice, direct measurements of v are not feasible. However, if we use some known potential

difference V to accelerate the particle from rest to a speed v, we could rewrite the speed in terms of V

using energy conservation:

Ukin =
1

2
mv2 and Upot = eV (4.3)

By substituting v in equations (4.2) and (4.3), e/m can be expressed directly in terms of V , B, and

the easily observed radius of curvature r:

e

m
=

2V

B2r2
(4.4)

4.3 Experiment

In the setup you will use, electrons are emitted at a very low velocity from a heated filament, accelerated

through an electrical potential V to a final velocity v, and finally bent in a circular path of radius r in a

magnetic field B. The entire process takes place in a sealed glass tube in which the path of the electrons

can be directly observed. During its manufacture, the tube was evacuated and backfilled with a small
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trace of helium gas. When electrons in the beam have sufficiently high kinetic energies (≥ 10.4 eV), a

small fraction of them will ionize helium atoms. Recombination of the helium ions, accompanied by the

emission of a characteristic blue light, occurs very near the point where the ionization took place. As a

result, the path of the electron beam is visible to the naked eye as a thin blue beam of light.

Electron Gun in Vacuum Tube

Figure 4.2 shows the indirectly heated cathode and the anode plate used to accelerate the electrons.

The cathode is heated by passing a current directly through the heater. A variable positive potential

difference of up to 500 V is then applied between the anode and the cathode in order to accelerate the

electrons emitted from the cathode. Some of the accelerated electrons come out as a narrow beam

through a small aperture on the grid.

The tube is set up so that the beam of electrons travels perpendicular to a uniform magnetic field B,

and is initially vertical. The B field is produced by the current I running through a pair of large diameter

coils (so-called “Helmholtz coils”) designed to produce optimum field uniformity near the center.

Figure 4.2: Diagram of the electron gun in the sealed glass tube.

The Helmholtz Coils and the Uniform Magnetic Field

A current I flowing in a single loop of wire of radius R produces a magnetic field on the symmetry axis

given by:

Bloop =
µ0R

2I

2(R2 + x2)3/2

x is the distance from the plane of the loop. The electromagnet used in this experiment, shown in

Fig. 4.3, consists of two loops of wire with N turns each, separated by a distance R (the same R as
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the coil radius). The coils contribute equally to the field at the center (x = R/2), so at that point

BI =
µ0R

2NI

(R2 + (R/2)2)3/2
=

(
4π × 10−7N

R(1 + 1/4)3/2

)
I = C · I (4.5)

The setup in the laboratory has N = 132 turns per coil, where each coil has a radius R = 0.1475 m;

before you come to the lab, use these numbers to calculate the constant C (units of T A−1). This

arrangement, called a pair of Helmholtz coils, yields a highly uniform field in the region at the center.

Figure 4.3: Helmholtz coils used to produce a uniform magnetic field.

Estimating the Charge to Mass Ratio

The electrons are therefore emitted into a region where a uniform magnetic field acts perpendicular to

the motion of the electrons. The magnitude of the magnetic field can be adjusted until the resultant

circular path of the electron beam just reaches the far end of the centimeter scale. The scale extends

from the electron gun in a direction perpendicular to that in which the electron beam was emitted —

i.e., along a diameter of the circular orbits. The scale numbers on the scale fluoresce when struck by

the electron beam. Then for given values of V , B and r it would be possible to determine e/m from

eq. (4.4).

However, the net field B⃗ in which the electrons move is not only due to the Helmholtz coils, but

also to the magnetic field in the ambient environment B⃗E . A part of the ambient magnetic field is due

to the Earth’s magnetic field, but there may also be contributions from nearby ferromagnetic materials

in the lab. Hence, the total field inside is the vector sum of B⃗I and B⃗E . We can minimize the effect

of B⃗E by aligning the B⃗I field with the direction of the needle of a compass close to the setup. The
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horizontal component of B⃗E is now aligned with B⃗I . In fact, the value of B⃗E is so small that we can

safely ignore it for the purpose of this lab. Incorporating eq. (4.5) into eq. (4.4) and rearranging terms,

we obtain

I ≃

(
1

C

√
2V

e/m

)
1

r
(4.6)

Now, instead of performing a single measurement of r, we can measure the variation of r with B

(or I) at fixed values of V , and use the fact that the coil current I is a linear function of the curvature

1/r.

Note that eqs. (4.2), (4.3), and (4.6) apply only to electrons with trajectories on the outside edge

of the beam — i.e., the most energetic electrons. This is because some electrons in the beam will lose

energy through collisions with helium atoms.

4.4 Procedure

Derivations

Before you begin taking data, derive equations (4.4) and (4.6) using the concepts and basic assumptions

described in the Introduction.

Check your work with your TA. When you write your lab report, you should include relevant equations

from your derivation in your “Introduction” and “Methods” sections. Recall that your lab report should

be clear and concise, so you should not include the full derivation in your report.

Orientation of the Coil and Tube Setup

For reasons already explained, we would like to orient the Helmholtz coils such that their axes are parallel

to the horizontal direction of the ambient magnetic field. To do this,

• Make sure that the setup is turned off before doing anything.

• Put a compass on the desk at a place close to the setup. Wait for the needle to stabilize.

• Rotate the setup such that the axes of the coils are parallel to the needle of the compass.

• The coil axis should now be aligned with the horizontal component of the ambient magnetic field.

An example is shown in Fig. 4.4

Please exercise caution as you align the Helmholtz coils: the cathode ray tube is very

delicate and may break if a large force is applied to it. It is recommended that you never touch

the tube or the coils, and only maneuver the setup by touching the base.
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Figure 4.4: Example of the Helmholtz coils aligned to the ambient field.

Measurement of the Circular Orbits

Once you are done with the alignment, you can turn on the setup and start taking data. Make sure

only the dim incandescent ceiling lights in the room are on.

• Turn on the power switch. The unit will perform a 30-second self-test, indicated by the digital

display changing values rapidly. During the self-test, the controls are locked out, allowing the

cathode to heat to the proper operating temperature. When the self-test is complete, the display

will stabilize and show “000”. Although the unit is now ready for operation, a 5-10-minute

warm-up time is recommended before taking careful measurements.

• Turn the Voltage Adjust control up to 200 V and observe the bottom of the electron gun. The

bluish beam will be travelling straight down to the envelope of the tube.

• Turn the Current Adjust control up and observe the circular deflection of the beam. When the

current is high enough, the beam will form a complete circle within the envelope. The diameter

of the beam can be measured using the internal centimeter scale inside of the tube. The scale

numbers fluoresce when struck by the electron beam.
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• For an accelerating voltage of 200 V, measure the beam diameter for a series of coil current

settings. Alternatively, determine the coil current necessary to bring the beam to each prescribed

distance on the tube arm. If the mark falls between steps on the ammeter, interpolate the current.

• Repeat the measurements for additional accelerating voltages: 100 V, 300 V, 400 V, and 500 V.

Note that both the voltage and current outputs are controlled by an on-board microprocessor,

which locks out the controls at both the minimum and maximum settings. The range for the

voltage V is 100− 500 V, while the range for the current I is 1− 3.0 A.

• When all of the data has been collected, switch off the apparatus.

Summary of data:

• I and r for four or five values of V
• Derivations for equations (4.4) and (4.6)

4.5 Analysis

When you finish the lab, you should have a data table for each accelerating voltage V you used. The

tables will contain values of I as a function of r. To determine the charge to mass ratio e/m, you will

plot I versus 1/r and perform the usual linear least squares analysis on the data.

• For each voltage V , plot I against 1/r. Plot all of the curves in a single chart, and remember to

convert r to meters.

• As already discussed, we expect that I should be a linear function of 1/r

I = A · 1
r
+D

Perform a weighted linear least squares fit to the data to find the slope A, the intercept D, and

the standard errors σA and σD for each of the five curves.

• Comparing the equation above to eq. (4.6) you will find that e/m can be expressed in terms of

A. Use this fact to get five estimates of e/m from the five curves. Remember to propagate errors

in A, and V to get the uncertainty σe/m in each of the estimates.

• Average your results to find e/m. When finding the average, weight the data points by the errors

σe/m — i.e., find a weighted average and a weighted standard error. Report these weighted

averages as your final result.
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When you have completed the analysis, comment on the results. Consider the usual set of questions:

• Do your results for e/m disagree significantly (i.e., accounting for statistical uncertainties) with

the accepted value

e/m = 1.758× 1011 C kg−1

• What possible systematic errors could be affecting your results?

• Which measurements of I are more precise, those for smaller r or larger r? Why?

• Does the value for D agree with the expected value, within uncertainties? Can you explain any

significant discrepancies, if they exist?

Note that accuracy can be difficult to achieve in this laboratory. Do not become frustrated if your

results exhibit significant discrepancies with respect to the accepted value of e/m. Discuss possible

sources of the discrepancies and suggest several means to improve the experiment.



Experiment 5

Polarization and Interference

5.1 Purpose

The purpose of this experiment is to investigate two basic concepts of wave mechanics: polarization

and interference. You will conduct the experiment with light, but the general concepts apply to many

other types of waves.

5.2 Introduction

Polarization

Within the enormous range of wave phenomena observed in nature, we can identify two basic types of

waves:

1. Longitudinal: waves whose vibrations are parallel to the direction of wave propagation. When a

longitudinal wave moves through a medium, one observes density variations — regions of com-

pression and rarefaction — in the material. Sound is an example of a longitudinal wave.

2. Transverse: waves whose vibrations (or displacements) are perpendicular to the direction of

propagation. Light is an example of a transverse wave.

Polarization occurs only in transverse waves. It refers to the axis of the waves’ oscillation, which is

always perpendicular to the wave direction. For a wave traveling in three spatial dimensions, the direction

of polarization can occur anywhere within the plane perpendicular to the direction of propagation. If a

wave oscillates along only one axis within this plane, it is said to be polarized.

Light is electromagnetic radiation; it consists of oscillating electric and magnetic fields that vibrate

perpendicular to the direction of the wave. When we speak of the polarization state of light, we refer

specifically to the vibration axis of the electric field.

37
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Typically, light produced by an incandescent bulb or a candle is unpolarized ; that is, the electric field

associated with the emitted light oscillates in random directions within the plane perpendicular to the

direction of propagation. However, unpolarized light can become polarized under several circumstances.

One of these occurs when we pass unpolarized light through a polarizing filter, as shown in Fig. 5.1. For

visible light, such filters are typically made of polymer films, plastics whose molecules form long chains

oriented along one axis.

When an unpolarized light wave encounters the filter, the component of the electric field oscillating

parallel to the molecular chains is absorbed in the material. The component of the field perpendicular to

the molecules’ long axes is transmitted. Therefore, the direction perpendicular to the molecular chains

is called the transmission axis.

Figure 5.1: Creation and detection of polarized light.

Suppose a wave has been polarized by a filter such that its polarization is characterized by an electric

field E⃗0. We can analyze the polarization state by passing the light through a second filter (called an

analyzer) whose transmission axis is oriented at an angle θ with respect to the first filter. The effect of

the analyzer is to pick off the component of E⃗0 parallel to its transmission axis, E0 cos θ. The remaining

light is absorbed. In this experiment, we use a laser, which is a polarized light source, and shine the

light through a polarizer (the analyzer), recreating the physics of two successive polarizers.

Since the intensity of the light wave is proportional to |E⃗|2, the intensity of light after it has passed

through the analyzer is

I = I0 cos
2 θ, (5.1)

where I0 = |E⃗0|2. This shift in the intensity, known as Malus’ Law, can be detected by a human eye or

a photometer.
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Interference: Young’s Double Slit

Another key property of waves is their ability to superimpose. That is, when two waves encounter each

other in a medium, the resulting wave is simply the algebraic sum of the two individual waves. The

combination of two or more waves into a third is called interference. Interference can occur constructively

or destructively:

1. Constructive Interference: the displacements of the two waves occur in the same direction, so

the sum is an even larger wave (see Fig. 5.2, left).

2. Destructive Interference: the displacements of the two waves occur in the opposite direction,

so the sum is smaller than either component (see Fig. 5.2, right).

Interference can be totally constructive, totally destructive, or some combination of both. The amount

depends on the relative phases of the component waves — that is, the relative location of each wave in

its oscillatory cycle.

Figure 5.2: Totally constructive and totally destructive interference of two waves.

When visible light constructively interferes, the result is an increase in the intensity of the light.

When it destructively interferes, the intensity decreases. The first clear demonstration that this actually

occurs was carried out in 1801 by Thomas Young. After passing a collimated light beam through two

narrow slits, Young observed the wavelike interference of the beam, which formed a pattern of bright

and dark spots.

Young’s double slit experiment, illustrated in Fig. 5.3, permits what remains of an incoming wave

(from the left) to travel to a distant screen (on the right) along two different paths l1 and l2. The light

waves from the two slits interfere, resulting in an interference pattern of bright (constructive) and dim

(destructive) patches as viewed on the screen.

Using the geometry of Fig. 5.3 and Fig. 5.4, we can quantitatively predict where bright and dark

patches will appear on the screen. The two slits are separated by a distance d, and located a distance
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Figure 5.3: Interference of light emanating from two small slits. Note that the horizontal distance D

has been shortened and distorted in this drawing.

D from the screen. We shine monochromatic (single-wavelength) light of wavelength λ from the left

onto the double slit, which allows two light waves to propagate from the two slits. Straight ahead, they

will always be in phase because they travel the same distance to the screen. But when the two waves

propagate at an angle θ, they cover different distances to reach a specific point on the screen1.

From Fig. 5.4, it is clear that the difference in path length ∆l between the two slits is

∆l = d sin θ

It is this ∆l that determines the location of intensity maxima and minima in the interference pattern on

the screen. For an intensity minimum to occur, we must have destructive interference between the two

waves. This happens when the length difference between the waves’ paths is a half-integer multiple of

the wavelength of the light:

∆l = (m+
1

2
)λ, m = 0, ± 1, ± 2 . . .

When ∆l takes on these values, the relative phase between the two waves will be 180◦ (consult Fig. 5.2

to convince yourself). For an intensity maximum, the relative phase must be 0◦, and this occurs when

∆l is an integer multiple of the wavelength:

∆l = mλ, m = 0, ± 1, ± 2 . . .

1We assume that the two rays are parallel (θ1 ≈ θ2), a good approximation since the distance to the screen D is

effectively infinite compared to the distance d between the two slits.
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Figure 5.4: Geometry of the double slit, assuming that the emitted rays are effectively parallel.

Therefore, there exists a set of angles θm where the intensity maxima will occur, satisfying

d sin θm = mλ

For small θm (in radians), we can use the approximation sin θ ≈ tan θ. If x is the distance on the screen

from the central maximum, then the position of the mth maximum is given by

sin θm ≈ tan θm ≈ xm
D

Combining all of our results, we find that the position of the mth maximum is a linear function of m:

xm =

(
λD

d

)
m (5.2)

The Interference Pattern

The cartoon in Fig. 5.3 suggests that the intensity pattern produced by the double slit should look

roughly like a sine wave, with distance between the peaks depending on the slit separation d and the

screen distance D. While this is true, it is not the entire story.

In fact, the true intensity pattern should appear as depicted in Fig. 5.5. The double slit diffraction

pattern (solid line) is periodic, but it also contains some larger features. This results from the fact that

a combination of interference effects are present in the double slit experiment: first, there is interference

of the two slits, as we have already discussed, and, secondly, there is a diffraction effect that occurs

from each individual slit. The larger pattern in the figure is the intensity profile you would observe if

you just passed the light through one slit. The intensity of the single slit pattern is given by

I = I0

(
sin (πa sin θ/λ)

πa sin θ/λ

)2

,
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Figure 5.5: Intensity pattern of the double slit: a double slit pattern modulated by a single slit envelope.

where a is the width of the slit. From this result, you can show that the single slit minima occur when

πa sin θ

λ
= nπ, n = ±1, ± 2, . . .

sin θn = n
λ

a

Using the small angle approximation we applied earlier, we can express this result in terms of the positions

xn of the single slit minima on the viewing screen:

xn =

(
λD

a

)
n (5.3)

5.3 Experiment

To conduct the experiment, you will use the components shown in Fig. 5.6. The primary pieces of

equipment that you will need to use are:

Light Sensor with Rotary Motion Sensor (RMS): Light sensor is a light-sensitive device that mea-

sures the total power of light incident on it, and RMS measures and reports the current transverse

position. It is mounted on a linear translator, along which it can move on the direction transverse

to the optical bench.

Double/Single Slit Disk: Holds various kinds of slits that will be used in this experiment. Slits can

be switched by rotating the disk.
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Polarizer (with RMS): Polarizes unpolarized light or act as analyzer. The angle it rotates through

can be measured and reported with a RMS.

Figure 5.6: Equipment components used in the experiment.

During the first part of the experiment, you will use the polarizer with RMS to test Malus’ Law,

with the laser being the light source. In the second part of the experiment, you will remove the polarizer

from the bench, install the slits and observe double and single-slit diffraction of laser light. The laser is

extremely useful because it emits intense light of a single wavelength, and because this light is coherent

(all light waves are in phase).

It is very important that lasers, polarizers and disks should stand upright at all times. Laying them

on their sides exposes them to damage from dust and to getting scratched/damaged by another object

placed on top of it. This also exposes you to damage to your grade!

Safety Note

Although the laser is of relatively low intensity, it can be dangerous in certain circumstances unless

used carefully. In particular, do not use the laser in such a way that it can shine into any person’s eye.

(The warning label on the laser states “Do NOT stare into beam!”). When you are not using the laser,

remember to turn it off.
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5.4 Procedure

Polarization

• Make sure only the dim incandescent ceiling lights in the room are on.

• Place the Polarization Analyzer with the Rotary Motion Sensor (RMS) between the laser and the

Light Sensor.

• Rotate the aperture disk in front of the Light Sensor so that the open aperture is in front of the

light sensor. Make sure that the light from the laser is aligned properly with the aperture. Push

the 0-10,000 sensitivity button on the side of the Light Sensor.

• Push all components on the Optics Track as close together as possible.

• Open “Polarization” in DataStudio. Make sure the Rotary Motion Sensor will measure the Angular

Position and use Large Groove in the setup.

• Click Start and slowly rotate the polarizer through 360 degrees (one revolution), then click Stop.

Try to move slowly and steadily through the turning points.

• Using the Smart Tool record the coordinates of at least 20 data points from the Intensity vs.

Angular position graph. The associated measurement uncertainties are ±1 on 0-10,000 sensitivity,

±0.01 on 0-100 sensitivity for the relative intensity and ±0.1◦ for the angle.

• Make sure to record the maximum intensity, I0, and the respective angular position, θ0. Maximum

intensity occurs when the polarizer is aligned with the direction of the polarized laser light, so

you will need to subtract θ0 from your measured angles to make sure you are recording the angle

difference between the polarization directions of the laser and the polarizer.

Double Slit Diffraction Pattern

• Replace the USB connector of the RMS on the Polarizer with that of the RMS on the Light

Sensor.

• Set the Double Slit disk to the (a = 0.04mm, d = 0.25mm) position. Here a refers to the slits’

width and d to the separation between the two slits.

• Place the laser at the far end of the Optics Track. Record the wavelength of the laser as printed

on its back. Mount the High Precision Double Slit Disk to the optics bench next to the laser,

with the printed side toward the laser.
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• Place the cardboard in between the laser and the Double Slit Disk. Push the Double Slit Disk

close to the laser so that the cardboard can stand against the components. Make sure that laser

light goes through the slit on the cardboard and into the double slit. See Fig. 5.7.

Figure 5.7: Setup for double slit experiment.

• Measure and record the distance D from the position of the double slit to the tip of the Light

Sensor. You can use either the scale on the track or use a meter stick.

• Move the Light Sensor slightly left or right along the linear translator until you can see the beam

somewhere on the white screen. Use the adjustment screws on the back of the laser to adjust the

position of the laser beam from left-to-right and up-and-down to make the pattern on the white

screen as bright as possible and aligned with the height of the slits on the Light Sensor.

• Use slit #3 on the Light Sensor and push the 0-100 sensitivity button.

• Move the Light Sensor to the left end of the linear translator arm as viewed from the laser.

• Open “Interference” in DataStudio. Click Start.

• Slowly move the Light Sensor across the translator arm and scan the full pattern. Hold the rear

of the RMS down against the linear translator bracket so it does not wobble up and down as it

moves. Try to move the sensor as smoothly as possible.

• Click Stop when you have finished scanning the light pattern and reached the right end of the

linear translator.

• Use the Smart Tool to record the positions of the maxima on the central interference pattern.
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Single Slit Envelope

• Please keep the data from the double-slit part. You can choose to hide the previous data in

DataStudio so that the new data look clear.

• Move the Light Sensor to the center of the linear translator arm so that you can see the interference

pattern on the white screen.

• Adjust the position of the cardboard carefully, until it covers one of the double slits, and you can

see a clear single slit pattern on the white screen. See Fig. 5.8.

Figure 5.8: Single slit pattern on the white screen.

• To make better measurements, you will probably want to use a different slit on the light sensor.

Try slit #5 for example. Make sure to take note of any changes made.

• Move the Light Sensor to the left end of the linear translator arm as viewed from the laser.

• Click start in DataStudio. You can now record the positions of the minima of the single slit pattern

at the same distance D. Remember to click stop. If you show the data of double-slit part on top

of that of single-slit, there should be a nice overlap resembling Fig. 5.5.

• Take a screenshot of the overlapping curves.
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Summary of data:

• Polarization section:

– Maximum intensity I0 and the corresponding position θ0
– Variation in the intensity with polarizer angle, 20 pairs

• Double slit diffraction section:

– Wavelength of the laser
– Distance D from slits to linear translator
– Slit separation d
– Positions of maxima, xm

• Single slit envelope

– Distance D from slit to linear translator
– Slit width, a
– Positions of minima

5.5 Analysis

Polarization

To test Malus’ Law, plot I/I0 against cos2 θ, where θ is the angle difference between the polarizer’s

angular position and θ0. Does this look like a straight line, as you would expect from Malus’ Law?

Perform a regression analysis and record the slope and intercept of the line, with their uncertainties.

You can also choose to use some non-linear fitting tools to fit your original data with the cos2 function,

and check the quality of the fit. In addition, consider the following questions:

• What reading do you obtain when the polarizer is at an angle of 90◦ relative to where maximum

intensity is recorded? This is called the noise of your measuring device. What reading would you

expect if there was no noise?

• What is the signal to noise ratio? The signal is the reading at θ0. What does this tell you?

• If you had a lot of background light, how could you reduce the influence it would have on your

results: by changing the setting, or by changing your data analysis?

• How does the noise arise? Is it possible to eliminate it completely?

• What is the physical meaning of the y-intercept of your plot? If it is different from zero, is the

difference statistically significant?

• What results would you get if you performed the same experiment using the incandescent bulb as

a light source, instead of the laser?
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Double Slit Diffraction Pattern

• Begin analyzing your double slit data by plotting the positions of the double slit diffraction maxima

xm against the order number m.

• Perform a least squares analysis to find the slope of the data (with uncertainties), and use the

slope to estimate the wavelength λ of the laser light.

• Compare your result to the wavelength of the laser recorded before.

• How many fringes can you see? Why can’t you see more? How could you improve the experiment

to see more fringes?

• What limits the precision of this measurement?

• Does it matter how close the slits are to the laser? What effect does changing the slit-to-light

sensor spacing have?

Single Slit Envelope

• Create a plot of xn versus the order number n (which counts up in either direction from the

central maximum).

• Determine the slope of this plot, and use it and the value of λ you found above to estimate the

slit widths a. Do the widths agree with the nominal width written on the component?

• How big is the double slit envelope compared to the single slit envelope? What does this mean

for the relative sizes of the slit width and slit separation? What happens if we change a of the

double-slit?



Experiment 6

Interferometer

6.1 Purpose

In this experiment, you will use an interferometer base designed to be used in Michelson or Fabry-Perot

mode. In the first part of the experiment, you will set up the device to obtain two separate measurements

of the wavelength of a He-Ne laser. Once you have determined the wavelength of the laser, you will

measure the indices of refraction of air.

6.2 Introduction

An interferometer is a device that splits a beam of light into several parts and then recombines them

to form an interference pattern. The pattern can be used to measure the wavelength of the light (or

other lengths) with tremendous accuracy. By interference, we naturally mean the behavior of waves

when they superimpose. When two waves encounter each other, the resulting wave is the sum of the

two individual waves. Interference can be totally constructive, totally destructive, or a combination of

both (see Fig. 6.1). The amount depends on the relative phases of the component waves.

Figure 6.1: Totally constructive and totally destructive interference of two waves.

49
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6.3 Fabry-Perot Interferometer

In a Fabry-Perot Interferometer, two partial mirrors are aligned parallel to one another, forming a

reflective cavity. Figure 6.2 shows one ray of light entering such a cavity and reflecting back and forth

inside. At each reflection, part of the beam is transmitted, splitting each incident ray into a series of

rays. Since the transmitted rays are all split from a single incident ray, they have a constant phase

relationship (assuming a sufficiently coherent light source is used).

Figure 6.2: Diagram of the Fabry-Perot interferometer. This device uses a cavity to split each ray into

a series of beams. (Note that the reflections in the cavity are offset for clarity.)

The phase relationship between the transmitted rays depends on the angle at which each ray enters

the cavity and on the distance between the two mirrors. The result is a circular fringe pattern, with

fringes that are thin, bright, and more widely spaced. An example of this pattern is depicted in Fig. 6.3.

The sharpness of the Fabry-Perot fringes makes it a valuable tool in high resolution spectrometry.

Moving one of the mirrors will change the distance (and thus phase relationship) between rays and will

cause the fringe pattern to shift. When the movable mirror translates by a distance λ/2, the new fringe

pattern is identical to the original:

λ =
2dm
m
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Figure 6.3: Example of the fringe-like interference pattern generated by an interferometer.

6.4 Michelson Interferometer

A.A. Michelson designed and built the interferometer in 1881 to test for the existence of the “ether,” a

hypothesized medium through which light was believed to propagate, like waves in water1. Today, the

Michelson interferometer is used for a number of tasks, including measurements of the wavelength of

light, measurements of extremely small distances, and for investigating optical media. The most well-

known version is a 3 mile-long version called the Laser Interferometer Gravitational-Wave Observatory

(LIGO), used to detect gravitational waves (the co-founders won the 2016 Nobel Prize in Physics!).

Figure 6.4 shows a diagram of a Michelson interferometer. A ray of light from the laser strikes

a beam splitter, which reflects 50% of the incident light and transmits the other 50%. The incident

beam is therefore split into two beams: one transmitted toward a movable mirror (M1), and another

reflected toward a fixed-position, adjustable-angle mirror (M2). Both mirrors reflect the light directly

back toward the beam splitter. Half the light from M1 is reflected from the beam splitter to the viewing

screen, and half the light from M2 is transmitted through the beam splitter to the viewing screen, where

it interferes with the light from M1.

Since the two interfering beams of light were split from the same initial beam, they were initially in

phase. Their relative phase when they meet at any point on the viewing screen therefore depends only

on the difference ∆l in the lengths of their optical paths.

1Michelson’s famous experiments discredited the ether hypothesis, hastening the development of Special Relativity.
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Figure 6.4: Diagram of the Michelson interferometer. A single beam is split into two rays by a half-

silvered mirror. The path difference between the rays is varied with a movable mirror.

Convince yourself of the following:

1. By moving M1, the path length of one of the beams can be varied.

2. Moving M1 by λ/4 (a quarter wavelength) closer to the beam splitter will reduce the overall

optical path of that beam by λ/2.

3. Moving M1 will cause the interference pattern on the screen to change

By slowly moving the mirror a measured distance dm and counting m, the number of times the

fringe pattern is restored to its original state, the wavelength λ of the light can be calculated as

λ =
2dm
m

(6.1)

Conversely, if the wavelength λ is already known, one can reverse the procedure and estimate the change

in position dm. In this manner, the interferometer can be used to measure extremely small distance

scales.
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6.5 Index of Refraction of Air

Introduction

In the Michelson interferometer, the characteristics of the fringe pattern depend on the phase relationship

between the two interfering beams. There are two ways to change this phase relationship: the first is

to change the distance traveled by one or both beams (by moving the movable mirror, for example);

and the second is to change the medium through which one or both of the beams pass. This second

method can be used to measure the index of refraction of air.

When light travels through some medium, its wavelength λ varies according to the formula

λ =
λ0

n

where λ0 is the wavelength of the light in vacuum and n is the index of refraction of the medium. For

reasonably low pressures, the index of refraction for a gas varies linearly with the gas pressure. As the

index of refraction varies, so does the wavelength λ in the medium.

Pressure and Changing Index of Refraction of Air

You will find nair by placing a vacuum cell along one leg of the Michelson interferometer. As you pump

air out of the cell, the wavelength of the light inside will increase relative to that outside. This causes

a shift in the interference pattern.

Figure 6.5: Shift in the wavelength of light in the vacuum cell when air is pumped out.

Originally there are Ni = 2d/λi wavelengths of light within the cell (considering that the laser

beam passes through the cell twice, on the forward and return trip). At the final pressure there are

Nf = 2d/λf wavelengths within the cell. The difference between these values is equal to the number

of fringes you might observe. Therefore, m = Nf −Ni = 2d(nf − ni)/λ0, or

nf − ni =
mλ0

2d
(6.2)
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6.6 Experiment

Laser Setup

• Set the interferometer base on a lab table with the micrometer knob pointing toward you.

• Position the laser alignment bench to the left of the base, approximately perpendicular to the

interferometer base, and place the laser on the bench.

• Secure one of the component holders (52-54) on the left side of the interferometer base, and

another on the right side, both facing in.

• Turn the laser on. Using the leveling screws on the laser bench, adjust its height until the laser

beam passes through the center of both component holders. (Use a piece of paper to check the

beam path.) You may need to shift the laser bench slightly in order to adjust the horizontal path

of the laser as well. This is most easily done by gently sliding the rear end of the laser transverse

to the axis of the alignment bench.

• Place the movable mirror (58) in the recessed hole on the interferometer base.

• Check that the beam is reflected back from the movable mirror close to the laser aperture, and

secure the mirror. (If it isn’t, you may need to make small adjustments to the position of the

movable mirror, and/or the alignment of the laser, until it is.) You are now ready to set up the

interferometer in any of its modes of operation.

Measurement of Laser Wavelength (in Fabry-Perot Mode)

The Fabry-Perot interferometer is only used once, at the start of the lab, to measure the wavelength of

the laser light.

• Align the laser and interferometer base as described in the Laser subsection above.

• Mount the adjustable mirror (51) on the interferometer base in Fabry-Perot position, facing the

movable mirror.

• Place the viewing screen (62) on the component holder behind the movable mirror using its

magnetic backing. You should see several images of the laser beam on the viewing screen.

• Using the thumbscrews, adjust the tilt of the adjustable mirror until there is only one bright dot

on the screen.
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• Attach the 18 mm FL lens (63,64) to the magnetic backing of the component holder in front of

the laser, so that the lens is on the side of the component holder furthest from the laser. Adjust

the position of the lens until the diverging beam is centered on the adjustable mirror. A clear

sharp interference pattern should be visible on the viewing screen.

Now you are ready to measure the wavelength of the laser.

• Adjust the micrometer knob to a middle reading (approximately 500 µm). In this position, the

relationship between the micrometer reading and the mirror movement is most nearly linear.

• Turn the micrometer knob one full turn counterclockwise. Continue turning counterclockwise

until the zero on the knob is aligned with the index mark. Record the micrometer reading.

• Adjust the position of the viewing screen so that one of the marks on the millimeter scale is

aligned with one of the fringes in your interference pattern. You may find it easier to count the

fringes if the reference mark is one or two fringes out from the center of the pattern, or you may

find that counting “bullseyes” is easier.

• Rotate the micrometer knob slowly counterclockwise. Count the fringes as they pass your reference

mark. Continue until some predetermined number of fringes (at least 20) have passed your mark.

As you finish your count, the fringes should be in the same position with respect to your reference

mark as they were when you started to count. Record the final reading of the micrometer dial.

• Record dm, the distance that the movable mirror moved toward the beam splitter according to

your readings of the micrometer knob. Remember, each small division on the micrometer knob

corresponds to 1 µm (10−6 m) of mirror movement.

• Record m, the number of fringe transitions that you counted.

• Repeat the above steps 10 times, recording your results each time.

Measurement of Laser Wavelength (in Michelson Mode)

• Remove the 18mm FL lens (63,64).

• Mount the adjustable mirror on the interferometer base in Michelson position. Place the second

component holder opposite the adjustable mirror and attach the viewing screen to its magnetic

backing.

• Position the beam splitter (55) at a 45◦ angle to the laser beam, within the crop marks, so that

the beam is reflected to the adjustable mirror. Adjust the angle of the beam splitter as needed so

that the reflected beam hits the adjustable mirror near its center.
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• There should now be two sets of bright dots on the viewing screen; one set comes from the fixed

mirror and the other comes from the movable mirror. Each set of dots should include a bright

dot with two more dots of lesser brightness (due to multiple reflections). Adjust the angle of the

beam splitter again until the two sets of dots are as close together as possible, then tighten the

thumbscrew to secure the beam splitter.

• Using the thumbscrews on the back of the adjustable mirror, adjust the mirror’s tilt until the two

sets of dots on the viewing screen coincide.

• Attach the 18 mm FL (63,64) lens to the magnetic backing of the component holder in front of

the laser such that the lens is on the side of the component holder furthest from the laser. Adjust

the position of the lens until the diverging beam is centered on the beam splitter. You should now

see circular fringes on the viewing screen. If not, carefully adjust the tilt of the adjustable mirror

until the fringes appear.

You will now repeat the measurement of the laser wavelength that you performed with the Fabry-Perot

setup, which you can refer to on page 55.

• Record mthe number of fringe transitions that you counted, and the final position on the microm-

eter knob, for 10 trials.

Measuring the Index of Refraction of Air

To measure ni, the index of refraction of air, we will pump air out of a vacuum cell and measure the

change in the number of fringes, m, for some pressure change Pf − Pi. Once you know how changes

in pressure affect the index of refraction, you can determine ni, the index of refraction of air, knowing

Pf , Pi, and nf . As we pump air out of the chamber, two things will happen:

• Pressure inside the cell drops ∆P = Pf − Pi

• The refractive index, nf , reduces. Recall that the refractive index of absolute vacuum is defined

to be nvacuum = 1.

Dividing both sides of equation (6.2) by ∆P , we get

nf − ni

Pf − Pi
=

mλ0

2d

1

Pf − Pi
(6.3)

The quantity on the left side is the slope of an n vs. P graph. Since we assume that the index of

refraction varies linearly with pressure (at low pressures), this ratio is constant for any corresponding

difference between n and P . Thus, we can rewrite the formula as a linear equation.

nf − ni = C(Pf − Pi) (6.4)
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where C is a constant that will be experimentally determined. Since the left-hand side is constant, the

quantity on the right-hand side of the equation is also a constant.

C =
mλ0

2d

1

Pf − Pi
(6.5)

• Align the laser and interferometer in Michelson mode.

• Place the rotational pointer between the movable mirror and the beam splitter.

• Attach the vacuum cell to its magnetic backing and push the air hose of the vacuum pump over

the air outlet hole of the cell.

• Adjust the alignment of the fixed mirror as needed so the center of the interference patterns clearly

visible on the viewing screen. The fringe pattern will be somewhat distorted by irregularities in

the glass end-plates of the vacuum cell, but this is not a major concern.

• For accurate measurements, the end-plates of the vacuum cell must be perpendicular to the laser

beam. Rotate the cell and observe the fringes. Based on your observations, how can you be sure

that the vacuum cell is properly aligned?

Now you are ready to measure the wavelength of the laser.

• To collect data for fringe number count as the pressure in the cell changes, begin with a cell at

atmospheric pressure.

• Slowly pump on the handle which will evacuate air from the cell and record the number of fringes,

m, that have passed during the interval, and the pressure P at the end of the interval.

• Note that the pressure you measure is actually a gauge pressure P − Patm, since the gauge

starts at zero when the cell is at atmospheric pressure. Convert your ∆N values to m = N −
Natm, the number of fringes at a given pressure minus the number of fringes corresponding to

atmospheric pressure. (You don’t know Natm, the number of fringes corresponding to the cell at

atmospheric pressure, but you can determine the number of fringes that have passed since you

started evacuating the cell, and this is m = N −Natm). Obtain at least 7 data points for m and

various ∆P .

• Convert your values for m to n− natm using eq. (6.2).

NOTE: the following quantities will come in handy:

Patm = 76 cm Hg

Pvacuum = 0 cm Hg

d = 3.0 cm
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Summary of data:

• Fabry-Perot section:

– m, dm for 10 runs

• Michelson section:

– m, dm for 10 runs
– m, ∆P for several runs

6.7 Advice for Accurate Fringe Counting

• It’s not necessary that your interference pattern be perfectly symmetrical or sharp. As long as you

can clearly distinguish the maxima and minima, you can make accurate measurements.

• It’s easy to lose track when counting fringes. It can help to focus on a fringe a few away from

the center, or to use the “disappearing bullseye” technique, in which you observe the central

minimum, to count the fringes.

• When turning the micrometer dial to count fringes, always turn it one complete revolution before

you start counting, then continue turning it in the same direction while counting. This will almost

entirely eliminate errors due to backlash in the micrometer movement. (Backlash is a slight

slippage that always occurs when you reverse the direction of motion in a mechanical system.)

Turning the micrometer dial clockwise moves the movable mirror toward the right.

• Always take several readings and average them for greater accuracy or have multiple members

count the same run and compare results.

• Warm up the laser to reduce intensity and polarization variations.

6.8 Analysis

Laser Wavelength

• For the measurement of the laser wavelength, take your results for the number of fringes moved

m and the distance dm traveled by the movable mirror and convert them to a wavelength.

• Average these wavelengths, and find the standard deviation of the mean: λ̄± σλ̄.

• Compare the results from the two separate methods. Do they agree within uncertainties? Does

one method appear to be more accurate than the other?
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Index of Refraction of Air

• Make a plot of n− natm vs. P − Patm for your data.

• Draw a line of best fit and determine the slope, C. This slope is slightly different from the ratio

described by eq. (6.3). However, you should be able to convince yourself that changing the x and

y values by a constant, natm and Patm, shouldn’t change the slope at all (these constant values

will subtract out when calculating the slope). Therefore, we can use our graph of n − natm vs.

P − Patm to determine our constant C.

• Once you know the slope of your line, you know the constant value of the right-hand side of

eq.(6.4). Now you can plug in values on the left-hand side. Take natm, the index of refraction of

air at atmospheric pressure, to be the unknown value — this is the original pressure in the cell

before you pumped the air out.

• For the other three values on the left-hand side you can plug in the atmospheric pressure and the

pressure in a vacuum, both in cm Hg, and the index of refraction of a vacuum. This will allow

you to calculate the index of refraction in air.

• Compare your value of nair at atmospheric pressure and standard temperature to that given in a

recognized source (eg. CRC Handbook of Chemistry and Physics). Comment on the results.

General Questions

• The Michelson interferometer can be used to measure extremely small distance scales. What is

the smallest distance scale that can be measured? What uncertainty is associated with this? How

could the precision be increased?

• What is the smallest distance scale that can be measured by the Fabry-Perot interferometer?

Which is better, the Michelson or the Fabry-Perot? Why?

• How could you change either of these interferometers to measure smaller distance scales? What

if you wanted to use the same equipment as you had in this experiment?
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Experiment 7

The Spectrum of the Hydrogen Atom

7.1 Purpose

In this experiment, you will observe the discrete light spectrum from a gas discharge lamp. You will

find that the spectrum consists of a collection of sharp monochromatic lines. Using a diffraction grating

spectrometer, you will be able to measure the wavelength of the emitted light to better than one part

in a thousand. Therefore, it is crucial to make all calculations to five significant figures.

7.2 Introduction

Spectrum of the Hydrogen Atom

When gases are subjected to large applied voltages, they tend to undergo dielectric breakdown and emit

bright light. If one examines the light from such a gas discharge with a spectrometer1, one finds that

the light consists mainly of a few bright lines of pure color on a generally dark background. For example,

excited hydrogen gas will emit four visible lines during breakdown: red, green, blue, and violet. This

phenomenon contrasts sharply with the continuous spectrum of colors observed in light from the sun or

an incandescent bulb.

The property of light that we observe as color is actually related to its wavelength λ. In the late

nineteenth century, J.J. Balmer discovered an equation that correctly predicts the wavelengths of the

visible lines in the hydrogen spectrum:

1

λ
= R

(
1

22
− 1

n2
i

)
(7.1)

In this expression, ni = 3, 4, 5, . . ., and R is the so-called Rydberg constant,

R = 1.0974× 107 m−1

1A device that decomposes light into its constituent wavelengths.
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Other spectral lines beyond the visible wavelengths can be observed in hydrogen and other gases; in

hydrogen, these wavelengths are given by the general formula

1

λ
= R

(
1

n2
f

− 1

n2
i

)
,

where nf and ni are integers.

Balmer derived his formula for the hydrogen spectrum empirically; at the time, his result did not have

a fundamental explanation grounded in classical physics. In fact, classical electromagnetism predicts

that hydrogen atoms should radiate continuously, and, even worse, that they should be highly unstable2.

Neither prediction is observed, suggesting deep flaws in the classical description.

The origin of the line spectrum became a major problem that was not resolved until 1913, when Niels

Bohr suggested an alternative theory for atoms. He proposed that the valence electron could only exist

in certain energy states, and could only “jump” between these discrete states discontinuously. When a

“jump” occurred, the atom would emit light to conserve energy. Since the energies were discrete, the

emitted light should always have the same fixed set of colors (wavelengths).

Bohr was able to derive a formula for the energy of the hydrogen atom’s quantum energy levels in

terms of the mass m and charge e of the electron, the permittivity of free space ϵ0, Planck’s constant

h, and an integer n:

En = −
(

me4

8ϵ20h
2

)
1

n2

Therefore the energy emitted by the atom during transition from an initial level ni to a final level nf is

∆E = Ei − Ef

The relationship between the energy E and the wavelength λ of the light is due to Planck: E = hc/λ.

Hence, one can derive an expression for the wavelength of light emitted during an atomic transition:

1

λ
=

∆E

hc
=

me4

8ϵ20h
3c

(
1

n2
f

− 1

n2
i

)
= R

(
1

n2
f

− 1

n2
i

)

Resolving a Spectrum with a Diffraction Grating

In order to decompose a spectrum, one can use a so-called transmission grating. The grating is nothing

more than a slab of material with a large number of tiny parallel slits. Transmission gratings are often

made of finely machined glass or even crystals. The spacing d between the slits is called the “lattice

constant” of the grating.

Consider a collimated (parallel) light beam incident on a grating from the left, as shown in Fig. 7.1.

Each slit will diffract the beam, and act in turn as a new source of waves. The waves all begin in phase

2The electrons should fall into the nuclei within a short timespan, collapsing the atom.
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Figure 7.1: A diffraction grating with slit separation d. The location of the diffraction maximum on the

viewing screen is dependent on the wavelength λ of the incident light. Note that the horizontal scale in

this diagram has been highly distorted.

at the slits, but depending on the angle with which they leave the grating (called the diffraction angle

θ), they travel different paths to the viewing screen and may be out of phase by that point. From the

figure, the difference in the path length for two adjacent slits is

∆l = d sin θ

In order for the grating to form a maximum at some point on the viewing screen, the waves must be in

phase there. This will occur if the path length difference is an integral multiple of the wavelength:

∆l = mλ, m = 0, 1, 2, . . .

Therefore, we find that maxima will occur whenever

d sin θ = mλ, (7.2)

where m is called the order of the maxima. Equation (7.2) tells us that the maxima for a given λ

will occur at different angles with respect to the laser beam direction. This is how the transmission

grating decomposes a spectrum into its individual wavelengths. When light shines through the grating,

particular colors will appear at several lower and higher angles relative to the forward direction θ = 0◦.

The order number m refers to the relative position of a maximum with respect to θ = 0◦.
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7.3 Experiment

The equipment used in this experiment, called a diffraction grating spectrometer, is depicted in Fig. 7.2.

The spectrometer contains three major components: a collimator tube, a rotating table, and a telescope.

Figure 7.2: Schematic of the spectrometer you will use to observe the hydrogen spectrum.

The collimator tube takes light from excited hydrogen gas, provided here by an arc lamp, and uses

a lens to collimate the beam — that is, make the light rays from the source parallel. When the parallel

rays exit the tube, they travel to the transmission grating, which is mounted in the center of the rotating

spectrometer base. The light diffracted by the grating may be viewed through an eyepiece at the end

of the telescope tube.

The telescope is able to swivel with respect to the grating, allowing you to sweep through a set

of angles θ and observe the angle dependence of the various spectral lines. Using eq. (7.2), you can

then use this angle to determine the wavelength of each line you observe. To determine the angles, the

spectrometer base contains a graduated circle attached to the telescope. As you turn the telescope, you

can read off the angle θ using the angular scale scored into the circle.

How to Read the Angular Scale

The angular scale in the base is not a standard ruler, but a Vernier ruler. With a standard angular

scale, you would probably be able to resolve angles down to the nearest degree or half degree. In this

experiment, we would like considerably more precision in our measurements. Therefore, the spectrometer

contains a scale that allows users to measure angles with great accuracy, to the nearest arcminute
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(1 arcmin = 1′ = 1/60◦).

Figure 7.3: Sample reading from the degree and Vernier scales in the spectrometer base.

The device can achieve this precision by having two scales rather than one. The first is a standard

degree scale running from 0◦ to 360◦, and the second is a Vernier scale running from 0′ to 30′ (0◦ to

0.5◦). To understand how these two scales work together, consult Fig. 7.3 as you read the following

procedure.

1. Begin by finding the zero marker on the Vernier scale.

2. Scan down from the Vernier scale to the next line on the degree scale, as read from the left. This

line is the angle θ, accurate to the nearest half degree (30′).

3. Reading from left to right, find the line on the Vernier scale that best lines up with a line on

the degree scale. This value marks, in arcminutes, your position between two ticks on the degree

scale.

4. Add the first reading from the degree scale to the second reading from the Vernier scale. You

have now measured θ to the nearest arcminute.

Again, refer to Fig. 7.3 as you read this procedure. In the figure, the 0 mark on the Vernier scale is

between 50.5◦ (50◦30′) and 51.0◦ (51◦0′). Hence, the base measurement is 50◦30′, since we are reading
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from the left. On the Vernier scale, the mark 13 best matches a mark on the degree scale. Therefore,

within the half degree interval, we add an additional 13′. The resulting measurement is

θ = 50◦30′ + 13′ = 50◦43′ = 50.717◦

Measurement Error

For the spectrometer, you will be using the Vernier scale to measure the angular separation of the various

slit images (or the angular separation of the various colored lines).

A simplistic view might be to take the error of each measurement to be the maximum resolution of

the Vernier ruler, but what would be a better approach for this? Hint: It has to do with the finite width

of the lines you are measuring.

7.4 Procedure

The first part of the experiment will basically include the procedure to set up the equipment. This

should be done with as much care as possible. Only then will you be able to measure the wavelength on

the limit of our apparatus. If you don’t set up the spectrometer correctly you will get systematic errors,

skewing your results.

Adjusting the Spectrometer

• Take the grating out of the holder and close the green knob.

• Rotate the yellow knob such that the slit is about half open.

• In the straight-through position (180◦), look through the eyepiece and turn the purple focusing

ring until you see a sharp image of the slit.

• Loosen the red knob and move the telescope tube until the crosshairs are in the middle of the

slit. Tighten red knob.

• Open the green knob and turn the tabletop such that the zero mark from the Vernier scale with

the magnifying glass is lined with either 180◦ or 360◦ from the outer scale. Always use only this

Vernier scale and don’t switch to the other one in between. Close the green knob and don’t open

it again for the rest of the experiment!

• Now you can fine adjust the relative position of the inner and outer scale by turning the blue

knob. Line up the zero on the Vernier scale and 180◦/360◦ and on the degree scale as carefully

as possible. NOTE: For some of the spectrometers, there is a small mark to the left of the zero
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mark on the Vernier scale. Make sure that you line up the zero mark, and not the extra mark,

with 180◦/360◦.

• Put the grating in the holder such that it is perpendicular to the telescope tube-collimator tube

line. Close the white screw to lock the grating.

Obtaining the Grating Lattice Constant

After adjusting the spectrometer you will measure the yellow line of a helium discharge lamp. Since we

know that the wavelength of this light is λ = 5.8756× 10−7 m, we can determine the lattice constant d

of the grating quite accurately. Even though the grating has 600 lines mm−1 written on it, this is only

an approximation. We want to know the lattice constant to five significant digits and not just three,

and so you have to measure it.

• Switch on the helium lamp and line the spectrometer up such that you can see the slit well

illuminated by the lamp as you look through the telescope.

• Put the black cardboard over the front end of your collimator tube and cover the spectrometer

with a black piece of cloth to block light from your surroundings (but be careful not to block the

telescope with the cloth).

• NOTE: This step and the next should be performed in the dark; therefore, switch on the incan-

descent light and turn off the fluorescent light in the room.

• Open the red knob and move the telescope tube to the left until the crosshairs are in the center

of the yellow line. You should first see a few blue and green lines, then the isolated yellow line,

and then red lines. The yellow line should be somewhere around 20◦ degrees.

• Note down the angle in degrees and minutes where you see the first order of the yellow line. Do

the same on the right side and average these two numbers.

• Use the average and plug it into the grating equation (m = 1) to determine the lattice constant

d to at least 5 significant figures.

• How many lines mm−1 does this lattice constant correspond to? Can you also see the second and

third order yellow lines on either side of θ = 0◦?

Measuring the Spectrum of Hydrogen Atoms

At this point, you are ready to use your calibrated equipment to observe the hydrogen spectrum. The

procedure is similar to the steps you already followed during the calibration.



68 EXPERIMENT 7. THE SPECTRUM OF THE HYDROGEN ATOM

• Switch off the He lamp and set up the spectrometer for the hydrogen lamp.

• The light purple line you see in the middle is the 0th order line.

• There are four visible lines in the spectrum: one red (furthest out), one greenish-blue, one purple-

blue and one dark purple. The dark purple line is very faint and you may not be able to see

it. Look on both sides of the straight-through position since the dark purple line may be clearer

on one side than the other. Note: You may also see “background” lines between the red and

greenish-blue lines - be careful!

• Measure the angles of the four lines for at least two orders on both sides (the first and second

order). Average the angles from both sides for each order.

• How many orders do you see on either side? E.g., look for the red line and count how often it

appears as you go further out.

• Do the higher orders overlap? That is, does a new order start before the old one ends? What do

you expect? Why?

Summary of data:

• Grating lattice constant section:

– θL and θR for yellow line of He

• Hydrogen spectrum:

– θL and θR for first and second order red, green, blue and purple lines.

7.5 Analysis

The analysis of the data should be fairly easy. There are not too many data points, but remember that

you should propagate errors!

• Put together formulas (7.1) and (7.2) and solve the resulting expression for ni.

• Use your data, the value for R, and nf = 2 to determine ni for both orders independently.

• Remember that ni should be an integer number labeling the initial atomic shell occupied by the

excited valence electron in each hydrogen atom.

• Are the results integers, or close to them?
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• Are the integer numbers consistent with the predictions of the Balmer Formula and the Bohr

Model?

• Which order gives the best results?

• For which color did the electrons jump from the lowest shell? Explain why you could have predicted

that anyway.

• What energy difference do these shells correspond to? How does the He/H get excited into these

states?

• For which energy level did you have the most precise measurement? Can you explain why?

• Why can you only see four lines in the Hydrogen spectrum?

• What is the 0th order line? Why does it appear?

• To what precision (in percent) were you able to measure the data? Compare that to other

experiments you have performed in this course. Discuss.

• What is the precision of measurement on the spectrometer? What precision does this correspond

to on the wavelength? How does this compare to measurements of the laser wavelength in the

Polarization/Interference and Interferometer labs?

• Discuss the factors that determine the uncertainty in your measurements. Which of these are

random, and which are systematic?
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Experiment 8

Capacitance and the Oscilloscope

8.1 Purpose

The purpose of this experiment is to investigate a capacitor as it charges and discharges in DC circuits,

and observe the behavior of combinations of capacitors in a circuit. You will also learn to use one of

the most useful pieces of equipment in the entire course: the oscilloscope.

8.2 Introduction

A capacitor is a device for storing electric charge and energy. The simplest capacitor one can think of

is just a pair of parallel metal plates, as shown in Fig. 8.1. When a charge +Q is placed on the upper

plate and −Q on the lower plate, a potential difference V is established between them.

Figure 8.1: Some symmetrical geometries that can be used to make a capacitor.

The amount of charge that can be stored on the plates is directly proportional to the voltage V .

The constant of proportionality is called the capacitance C:

Q = CV

As you might expect, the dimensions and configuration of the plates affect how much charge they can

store. This geometrical dependence is reflected in the value of C. For any plate geometry — planar,
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cylindrical, spherical, etc. — the capacitance always takes on the general form

C =

(
Geometry factor

units of length

)
· ϵ0

Charging a Capacitor

A capacitor can be charged by attaching conducting wires to its plates and using a battery to establish a

voltage ε across the device. However, the capacitor plates will not immediately gain a charge Q = Cε;

it gradually fills with charge, with the charging rate smoothly decreasing over time.

Figure 8.2: Circuit used to charge a capacitor C.

To visualize this process, consider a battery of EMF ε connected in series with a capacitor C, a

resistance R, and a switch S (Fig. 8.2). We start with the switch open, so that no current flows in the

circuit and C is uncharged. Then we flip S shut, allowing a current I to flow through the circuit. By

Kirchhoff’s Loop Rule, the sum of the potential drops around the circuit is zero:

∆Vbattery +∆Vcapacitor +∆Vresistor = 0

ε− q

C
− IR = 0

We have written q as the instantaneous value of the charge on C. The instantaneous current and charge

are related by I = dq/dt, so that

ε−R
dq

dt
− q

C
= 0

This differential equation can be solved for q (try it yourself), yielding

q(t) = Q
(
1− e−t/RC

)
I(t) =

ε

R
e−t/RC
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The quantity RC, called the time constant of the circuit, sets the time scale for how long it will take to

fill the capacitor up to a given level. For a given resistor R, a larger capacitor will take longer to charge.

Discharging a Capacitor

A capacitor initially filled with charge Q = Cε can be discharged if a wire is used to “short” the two

plates, allowing charge to flow freely between them. Of course, as in the previous case, the discharge

will not be instantaneous, but will occur at a rate that depends on the size of the capacitor and the

internal resistance of the wire.

Figure 8.3: Circuit used to discharge a capacitor C.

For an example of discharge, consider the circuit depicted in Fig. 8.3. When the switch S closes,

the resistor R begins to draw current I, draining the capacitor. Again, using Kirchhoff’s Loop Rule,

IR+
q

C
= 0

R
dq

dt
= − q

C

This differential equation is easily solved for q:

q(t) = Q e−t/RC = Cε e−t/RC

I(t) = − ε

R
e−t/RC

Comparing this with our earlier result, we see that the current that flows when discharging a capacitor

from a given potential ε decreases in time just like the current in a charging capacitor. The difference in

the sign of I between the two cases indicates that the currents flow in opposite directions. This makes

sense — the capacitor is losing charge, so I(t), the rate of charge moving through the capacitor, should

be negative.
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8.3 Experiment

Measuring Large RC Charging with an Ammeter

Figure 8.4 shows the circuit to be wired for measuring the current I(t) when charging a capacitor C

through a resistance R up to 15 V. For this part of the lab, you will use a bank of three capacitors

attached to a piece of wood with three switches and labeled 30 µF (microfarads).

Figure 8.4: Switch circuit used to analyze charging of a capacitor C.

The capacitors in the bank are connected in parallel, such that their combined capacitances add:

Ctotal = C1 + C2 + C3

By closing the switches one by one, you can increase the value of C in increments of 10 µF. The resistor

Rdis in the circuit is used solely to discharge the capacitor bank between measurements. You will use

an ammeter to measure the current I flowing through the capacitor as a function of time. The internal

resistance of the ammeter, R, determines the time constant τ = RC of the charging cycle.

A Warning About Electric Shocks

A capacitance of 10 µF sounds like a tiny amount, but don’t let the prefix “micro” fool you: the bank of

capacitors can store a significant amount of charge. If the fully charged bank were to discharge through

your body, you would get quite a nasty shock.

While there is no need to fear the equipment, please take care when touching the bank and switches.

Do not touch two terminals on the battery or on the capacitor bank simultaneously. When handling

electrical equipment, a good rule of self-preservation is to put one hand in your pocket, which decreases

the likelihood that a conducting path will close through your body.

Large RC Discharging

Use the circuit shown in Fig. 8.5 to measure the discharge current through R with the same three

capacitances C used earlier. You will use the same equipment discussed above.
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Figure 8.5: Switch circuit used to analyze discharging of a capacitor C.

You will use the switch to connect the battery across the capacitor, charging it up. Then you can

flip the switch to discharge the capacitor through the ammeter, whose internal resistance R determines

the time constant τ = RC. By measuring the current I through the ammeter as a function of time,

you can estimate the time constant and R.

Measuring Small RC Charge and Discharge with an Oscilloscope

In the first segment of the lab, you will use a combination of resistance and capacitance chosen such that

τ = RC is long enough to allow observation of I(t) with an ammeter. However, even for reasonable

values of R and C, such as 15 kΩ and 0.01 µF, τ is too small to be measured in this manner (τ =

0.15 ms).

To observe signals that vary rapidly in time (particularly periodic signals), we can use a digital

oscilloscope, which is essentially a computer tailor-made to graphically display voltages as a function

of time. A digital oscilloscope works by taking an input voltage V (t) and sampling the waveform at

regular time intervals using an analog-to-digital converter (ADC). The device has an internal clock,

just like any home PC, that determines the sampling rate. Most digital oscilloscopes use sampling rates

on the order of 1 GHz (109 samples per second).

The oscilloscope stores an analog input V (t) as discrete set of sample points {Vi}. It then displays

the waveform on a screen (usually an LCD) as a function of time. To display the function, the scope

uses an interpolation scheme to calculate the value of V (t) in between the sample points {Vi}. Effec-

tively, the display rebuilds the analog function from the sampled waveform1. The scope will properly

reconstruct those waveforms whose maximum frequency is less than half the sampling rate; otherwise,

the reconstructed signal becomes highly distorted by the digitization process (why?).

Because the digital scope is essentially a computer, it not only displays fast signals as a function of

time, but also performs a number of real-time calculations on those signals. Familiarizing yourself with

the scope and learning to use these functions is a primary goal of this experiment.

1This is analogous to how a stereo plays sound using the digitally recorded audio information stored on a CD.
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Figure 8.6: Analog-to-digital conversion of a sinusoidal voltage V (t) → Vi. An oscilloscope displays the

voltage on an LCD screen by interpolating between the sampled points Vi.

The Tektronix TBS-1052B-EDU Digital Oscilloscope

The digital scope used in this laboratory is the Tektronix TBS-1052, depicted in Fig. 8.7. Do not be

intimidated by the number of buttons on the faceplate; there are only several functions that you will

need to learn in order to use this device.

For your reference, the controls and functions you will need to use are:

VERTICAL Controls: The vertical controls for CH 1 and CH 2 are identical. These controls primarily

affect the display of the vertical axis, or voltage, of the input. Of these controls, you will be using:

1. Position (1): this knob positions a displayed waveform vertically on the LCD screen.

2. Scale (2): this adjusts the scale of the vertical (voltage) axis of the LCD display, allowing

you to view smaller or larger signals.

CH1/CH2 Input (3): These inputs, compatible with BNC-type transmission cables, are used to carry

signals to the scope for display. There are two channels, allowing you to display two inputs

simultaneously.

HORIZONTAL Controls: The horizontal controls affect the display of the horizontal time axis. The

controls you will use are:

1. Position (4): this knob will move a displayed waveform horizontally on the LCD screen.
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Figure 8.7: Faceplate of the oscilloscope used in this experiment.

2. Scale (5): this knob selects the horizontal time scale of the LCD trace. Quite useful for

viewing different time features of a signal.

Ext Trig (6): This is where you plug in the trigger signal, that is, some periodic wave that you know

is at the same frequency as the signal you are trying to analyze.

TRIGGER Controls: This set of controls adjusts where the oscilloscope searches for an input signal

and how it displays it. When you are comfortable displaying signals, you may explore the trigger

menu. Novices should instead use the oscilloscope’s Autoset feature. However if you do want to

play with it, the two useful controls are:

1. Trigger Menu (7): Press once to display Trigger Menu on the screen. Press for more than

1.5 seconds to display the trigger waveform instead of the channel waveform.

2. Trigger Level (8):If you are having trouble setting the trigger level correctly, push this knob

to set trigger level to 50%. This will automatically set it halfway between the max and min

of the trigger signal. From here you can adjust easily.

RUN/STOP (9): Freezes the current image on the screen.

MEASURE Button (10): The scope can perform a number of automated measurements for you. To

access these, hit the Measure button at the top of the faceplate, and then use the menu box

buttons to pick the settings you want.
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AUTOSET Button (11): An extremely useful button, located at the top right of the faceplate. Au-

toset obtains a stable waveform display for you, automatically adjusts the vertical and horizontal

scales, and sets up the trigger.

Multipurpose Knob (12): You may turn or push this knob after activating one of the button functions

at its right. Press Measure to select the type of automated measurements in CH1 or CH2. Turn

Multipurpose knob to scroll and highlight, then push knob to select automatic measurement type.

If you wish to use the Cursor function, press the Cursor button, then turn the Multipurpose

knob to position the selected cursor. Automatic measurements are more accurate than cursor

measurements.

Figure 8.8: The multipurpose knob and the functions at its right.

MENU BOX Buttons: These are five blank buttons located immediately to the right of the LCD

screen. When you enable any menu function on the scope (TRIGGER, CH 1, MEASURE, etc.),

these buttons will help you to control the functions.

8.4 Procedure

Large RC Charging

Set up up the capacitor bank, switch, power supply, ammeter, and 10 kΩ resistor to measure large RC

charging, as shown in Fig. 8.4. Before closing the switch to the power supply and starting each new

measurement, momentarily flip the switch such that the capacitor bank discharges across the resistor.

Set up the bank such that the total capacitance is 10 µF; then flip the switch connecting the capacitor

in series with the battery. As the capacitor bank charges, measure I at regular time intervals and record

your results with uncertainties. If necessary, discharge the capacitor and repeat the measurement to

acquire more data points. When you have finished, set up the bank for 20 µF and 30 µF and repeat

these measurements.

Make sure to also record the voltage setting you use on the adjustable power supply.
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Large RC Discharging

Set up the circuit drawn in Fig. 8.5. Again, you will measure the discharge rate for three values of the

capacitance C.

Before closing the switch to begin the measurement, momentarily flip the switch to connect the

power supply across the capacitor. DO NOT under any circumstances take leads from the battery and

touch them to the capacitor terminals by hand! Use the switch.

When the capacitor is charged, flip the switch to allow it to discharge through the ammmeter.

Record your values of I(t). Make sure to also record the voltage setting you use on the adjustable

power supply.

Display Periodic Signals on the Oscilloscope

Use the signal generator to input sine waves and square waves of various frequencies. You should connect

the leads from the function generator to the oscilloscope CH 1 or CH 2. Be sure that the ground on

the function generator is connected to the ground on the oscilloscope (the ground banana plug male

connector is black). Press AUTOSET to acquire the signal.

Vary the shape (square, sine or sawtooth), the amplitude, and the frequency of the input signals

produced by the function generator and observe the effect on the oscilloscope display. You will need to

change the Vertical scale setting using the knob on the appropriate channel to make the signal appear

larger or smaller on the screen; the Horizontal Scale knob will control the horizontal scale. One full

division refers to the length of the sides of the square boxes.

Practice with Automatic Measurement

Set the function generator to output a sine wave and display the result using Channel 1. You will now

use the oscilloscope to automatically output basic information about the signal.

• Push the MEASURE button to display the Measure menu.

• Push the second menu box to select CH1.

• Turn the Multipurpose knob to highlight Period then push the Multipurpose knob to select it.

• Turn the Multipurpose knob again to highlight Frequency then push to select it.

• Turn the Multipurpose knob again to highlight Peak-Peak then push to select it.

• Push the round Menu On/Off button below the last menu box to turn off the menu.

The bottom of the LCD screen should now display the frequency, period, and peak-to-peak amplitude

of the input. Vary the amplitude and frequency of the input waveform using the function generator
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controls, and observe what happens on the LCD screen. Try out the measurement for square and

triangular waves, if the function generator allows it.

Note that you must display at least one full cycle of the waveform for the period and frequency

calculations to work properly. You can alter how much of the wave you display by turning the Horizontal

Scale knob.

Observation of a Short RC Time

Set up your circuit as shown in Fig. 8.9 Use the smallest R and C available. For this part you should

use a square wave with a frequency of about 100 − 150 Hz; adjust the time scale (the x-axis scale)

so that half of the charge/discharge cycle fits in the LCD window, as in Fig. 8.10. Also, make sure

that the ground (black banana plug jack) of your function generator is connected to the ground of your

oscilloscope.

Note that you may need to tune the frequency of the function generator a bit to get your display to

look like Fig. 8.10. As you change the frequency, it will also be necessary to alter the time axis on the

scope. Be patient: the measurement cannot be done well unless you have a nice exponential curve.

Figure 8.9: Observing the time behavior of a small RC combination.

You can get a fairly exact value for the time constant, RC, from the oscilloscope display by using

the cursor function as follows:

• Adjust the Vertical and Horizontal scale settings of the input so that one part of the charge/discharge

cycle fills the LCD screen, as in Fig. 8.10.

• Push the Cursor button.

• Push the top menu box button to select the Amplitude mode using the Multipurpose knob.

• In Amplitude mode, turn the Multipurpose knob and place one cursor line at the top of your

curve.
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• Push the last menu box to select Cursor 2 and place it at the bottom of your curve.

• The delta menu box on the right-hand side displays the value of the difference ∆V between the

two cursor values. This is the total voltage difference across your resistor over the cycle.

• After a time t = RC, the voltage will drop to 1/e = 37% of its initial value. To find this point,

calculate 37% of ∆V and move the bottom cursor to that location.

• Once you have the voltage cursors appropriately placed, use the Cursor menu to switch to Time

mode and align the vertical cursors with their positions in voltage mode. Read off the time

difference ∆t between these two points. This time difference is just the time constant τ .

• Repeat this procedure for several different values of the function generator frequency.

Figure 8.10: Estimate of the time constant using the oscilloscope Cursor function. (Note that this figure

is not shown on the correct scale.)

Summary of data:

• Current I vs time: three capacitances, charging and discharging
• Resistance R, capacitance C for all circuit elements used
• ∆V and t = RC from oscilloscope: several function generator frequencies f .
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8.5 Analysis

Large RC Charging and Discharging

The analysis of the capacitor bank data proceeds in the same way for both the charging and discharging

cycles.

• Plot your current data I(t) vs time, and use a logarithmic scale on the y-axis. Because I(t) is

an exponential function in time, it will look like a straight line when plotted in this manner. This

happens because the logarithm linearizes the exponential:

ln I = ln
(
I0 e−t/RC

)
= ln I0 −

(
1

RC

)
t

In other words, ln I is a linear function of t:

ln I = mt+ b

• Transform your current data I(t) into linear form by taking the ln of the values you recorded.

Remember to transform the uncertainties on the data points as well. Perform a linear regression

analysis of ln I versus t, and from the slope m and its standard error σm estimate the time

constant τ = RC for this circuit. Do you find that the time constants obtained from charging

and discharging the circuit agree within errors? What could cause any disagreement?

• Given that we use 10µF, 20µF and 30µF, we should see that τ30µF/τ20µF = 3/2, τ30µF/τ10µF = 3

and τ20µF/τ10µF = 2. Do your results agree within errors?

Short RC Measurement with the Oscilloscope

• Compare your measurements of τ from the digital scope with the estimate you expect using RC.

Remember that your value for R should not only include the resistance of the circuit component

you used, but also the 50 Ω output impedance of the function generator.

• Do the calculated time constants agree within uncertainties, and with RC? If there is a significant

difference, can you explain why?

• Consider that typical circuit elements may have tolerances as poor as 10%. Does this explain any

discrepancies?

• Does the magnitude and shape of the voltage across the resistor agree with what you expect?

Justify your results.
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• What should the voltage difference across the capacitor look like? Draw the time-dependent

behavior, and indicate the magnitude of the variation.

• What should the voltage across both elements, the resistor and capacitor, look like? Why would

you expect that anyway?

• The scope has an approximate internal resistance of 1 MΩ. Estimate what effect this has on the

time constant of the circuit. What if you used a 1 MΩ resistor in the circuit instead of the 10 kΩ

resistor? By how much would this change the time constant?

• What would happen if you used a much higher frequency, say 1 kHz? Can you estimate what

range of frequencies will give you accurate measurements of τ?
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Experiment 9

AC Circuits

9.1 Purpose

You will be investigating the voltage and current response of an alternating circuit (AC) to various

impedance changes. The experiment will make extensive use of the digital oscilloscope.

9.2 Introduction

An alternating current, or AC, circuit is a device containing the usual elements (resistors, capacitors,

etc.), but driven by a voltage that varies in time. In this experiment, we will study the behavior of AC

circuits using series combinations of a resistor R, inductor L, and capacitor C, as depicted in Fig. 9.1.

Figure 9.1: A series RLC circuit driven by a sinusoidal voltage, with components voltages indicated.

Suppose some time-dependent voltage V (t) drives the circuit in Fig. 9.1. We can analyze the

85
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circuit’s behavior by writing down Kirchhoff’s Loop Rule:∑
∆V = 0 = V (t)− VR − VL − VC

V (t) = IR+ L
dI

dt
+

q

C

= IR+ L
dI

dt
+

1

C

∫
I dt

We would like to solve this differential equation for I(t) — and hence VR, VL, and VC — given a

driving voltage V (t). For arbitrary V (t), the equation is quite difficult to analyze. However, if V (t) is

sinusoidal, driving the circuit with an angular frequency ω = 2πf = 2π/T such that

V (t) = Vmax sinωt+ ϕV

I(t) = Imax sinωt+ ϕI ,

then the current in each circuit element will also be sinusoidal, though perhaps out of phase with the

voltage across that element.

Voltage and Current in the Resistor R

By Ohm’s Law, the voltage across the resistor is VR = IR. Because the resistor is in series with

the voltage supply, the current running through it must have the same amplitude and phase as I(t).

Substituting I(t) into Ohm’s Law, we find

VR = I(t) ·R = ImaxR sinωt

That is, the voltage and current in the resistor have the same time dependence, and are in phase with

each other.

Voltage and Current in the Inductor L

For a circuit element like the inductor, the voltage can be obtained from Faraday’s Law,

VL = L
dI

dt

Again, because the inductor is in series with the voltage supply and the resistor, the current moving

through it is the same I(t) used above. Substituting and differentiating I(t), we obtain

VL = ωLImax cosωt

= ωLImax sin
(
ωt+

π

2

)
= ImaxXLsin

(
ωt+

π

2

)
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The quantity XL = ωL is called the reactance of the inductor. The comparison of XL to the resistance

R in Ohm’s Law is actually a good way to think about how the inductor works. For an inductor, the

current running through the device will be out of phase with the voltage across it.

There are two things you should note about this result:

1. In the inductor, the voltage and current are out of phase; the voltage “leads” the current by a

phase shift ϕ = +90◦.

2. The maximum voltage occurs when sin (ωt+ π/2) = 1; at this location,

Vmax = ωLImax

By replacing ωL by the variable XL, we get an expression that looks rather like Ohm’s Law:

Vmax = ImaxXL

Voltage and Current in the Capacitor C

For the capacitor, the voltage VC is obtained from the relationship

VC =
q

C
=

1

C

∫
I(t) dt

VL =
1

C

(
−Imax

ω
cosωt

)
=

1

ωC
Imax sin

(
ωt− π

2

)
= XCImax sin

(
ωt− π

2

)
The expression XC = 1/ωC is also called the reactance; but unlike XL, it actually decreases as a

function of ω. The capacitor is like a mirror image of the inductor, strongly resisting the flow of current

when the driving frequency ω is small, but barely resisting the flow of high frequency signals.

As before, notice two things about this result:

1. The voltage and current are out of phase, but the voltage now “lags” behind the current by a

phase shift ϕ = −90◦.

2. At the maximum voltage, where sin (ωt− π/2) = 1,

Vmax =
Imax

ωC

Again, replacing 1/ωC by a new variable XC yields an equation that looks like Ohm’s Law:

Vmax = ImaxXC
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Figure 9.2: Summary of the various phase relationships for a series RLC circuit.

Impedance and Phase of the RLC Circuit

Now that we understand the voltages across each individual element VR, VC , and VL, we can try to

make sense of the overall RLC combination. The total voltage VRLC across the series combination is

just the algebraic sum of the voltage drops across each component:

VRLC = VR + VL + VC

= Imax

[
R sinωt+XL sin

(
ωt+

π

2

)
+XC sin

(
ωt− π

2

)]
= Imax [R sinωt+ (XL −XC) cosωt] (9.1)

Now, we know that the solution VRLC must be sinusoidal, and must have some phase ϕ:

VRLC = Vmax sin (ωt+ ϕ)

= Vmax [sin (ωt) cosϕ+ cos (ωt) sinϕ] (9.2)

Since eq. (9.1) and eq. (9.2) must be equal at all times t, we can equate the coefficients of sinωt and

cosωt and solve for ϕ:

Vmax cosϕ = ImaxR

Vmax sinϕ = Imax(XL −XC)

}
⇒ tanϕ =

XL −XC

R
=

ωL− 1/ωC

R

The overall phase shift of the RLC combination depends on the reactive parts of the circuit XL and

XC . Since these are functions of frequency, the phase will change if the driving frequency ω changes.

As a final step, we can eliminate ϕ from these two equations by squaring and adding them:

Vmax = Imax

√
R2 + (XL −XC)2

= ImaxZ,
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where Z =
√

R2 + (XL −XC)2. Once again, this looks suggestively like Ohm’s Law: voltage equals

current times “resistance.” The quantity Z, called the impedance of the RLC circuit, is in fact just

a generalized, frequency-dependent resistance. The resistive part of Z (just the resistor R) resists all

signals in a frequency-independent way; it is also responsible for dissipating the power delivered by the

voltage supply as heat. The reactive part of Z (the combination XL −XC) does not dissipate energy,

but is responsible for determining the circuit’s frequency response.

A way of visualizing this is using phasor diagrams. Notice how all the equations derived in this

subsection can be obtained via Pythagoras Theorem from Fig. 9.3.

Figure 9.3: A series of phasor diagrams providing visual illustration on how the reactances influence the

voltage and current of a RLC circuit. The voltage contributions of the components have to be treated

as vector sums due to the phase differences between them.

Frequency Response of the RLC Circuit

Because the RLC circuit contains reactive elements, the voltage V across the resistor depends on the

frequency ω of the AC source. The frequency dependence, depicted in Fig. 9.4, has a resonance; that

is, there is a frequency ω0 where the impedance Z takes on a minimum value, so the current takes on

a maximum value for a given driving voltage.
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Figure 9.4: Frequency response of the RLC circuit, showing the resonance frequency ω0.

The impedance is clearly a minimum when XL = XC , so that the resonance frequency is

ω0L =
1

ω0C

ω0 =
1√
LC

The resonant behavior of the RLC circuit actually has a pretty intuitive explanation. Remember that

at low frequencies, the capacitor has a high “resistance” to current flow, but the inductor allows current

to move freely. At high frequencies, it is the inductor that resists the signal, while the capacitor has

a very low resistance. In between, there is a crossover region around ω0 where the influences of both

effects are minimal.

The width of the peak at half of the maximum voltage or current, denoted ∆ω or FWHM (full width

at half maximum) depends on the size of the resistor in the RLC combination. Smaller resistors will

produce sharper peaks, making the circuit more sensitive to frequencies near ω0.

The frequency response of the RLC combination makes it a very useful filter for AC signals. Called

a bandpass filter, circuits like this are employed when we want to pick out a frequency from a range of

possible signals. A perfect example is the radio tuner in an automobile.

9.3 Experiment

You will record several observations of the behavior of the series RLC circuit shown in Fig. 9.5. The

procedure makes heavy use of the digital oscilloscope used in the Capacitance experiment. If you still

feel uncomfortable using the scope, refer back to that section of the lab manual to refresh your skills.
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Figure 9.5: Setup of the RLC circuit, function generator, and scope.

Besides the oscilloscope, there are only a few pieces of equipment you will need to use:

1. A variable resistor, in the form of a decade resistor box.

2. A capacitor provided for you in the lab. Be sure to note the capacitance.

3. Two inductors: a small 150 mH circuit component, and a large induction ring of unknown L.

4. A function generator, which you will use to send sinusoidal signals through the circuit.

9.4 Procedure

Setting Up

The first thing you should do is look at your driving signal on the oscilloscope.

• Connect the output of the function generator to CH 1 on the oscilloscope using wire leads of a

single color.

• Make sure the ground on the function generator is connected to the ground on the scope. Ground

is indicated GND on the black female BNC-to-banana plug connector.

• Set up the function generator to produce a sinusoidal signal in the range of 1 kHz, with a peak-

to-peak voltage of Vpp = 20 V.

• Set up the oscilloscope to trigger on the function generator. You can do this by pressing the

Trigger button, and then on the menu that appears on the right-hand side of the display, press

the button next to trigger source until CH 1 appears.

You should now be able to alter the VOLTS/DIV and SEC/DIV settings in order to view the sine

wave produced by the function generator. If you want to take a shortcut, you can quickly obtain the
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appropriate settings by pressing the AUTOSET button. Note also the following general hints for dealing

with the equipment:

• If at any time the scope display is very noisy, it is possible that you have lost the trigger. You can

fix this by adjusting the trigger level knob in the TRIGGER controls, or turn off CH 2 and press

AUTOSET.

• The frequency recorded by the scope reads is f , in Hz, or cycles per second. The angular frequency

of your RLC circuit, ω, given in rad sec−1, is related to f by ω = 2πf .

Resonance

• Use a multimeter to measure the resistance of the 150 mH inductor. Connect the inductor, the

capacitor, and the decade resistor box in series with the function generator using cables of a single

color (different from that used above), as depicted in Fig. 9.5.

• Connect CH 2 of the oscilloscope across the resistor, making sure that the ground on the

oscilloscope and the ground side of the resistor are connected to the ground on the

function generator; use wires of a color different than the two colors used in earlier procedure

steps. Your oscilloscope and function generator now share a common ground.

• Set the decade resistor box to a resistance of 50 Ω. Make sure you see a stable display of both

CH 1 and CH 2.

• Using your circuit components, estimate the resonance frequency you expect to observe.

• Use the frequency knob on the function generator to try to find the circuit resonance. Sweep

through a set of frequencies until you observe the signal on CH 2 peaking around some value.

NOTE: observe when the peak-to-peak voltage of the sine wave on CH 2 is maximized.

• When you have found the resonance frequency ω0, slowly scan over frequencies and record the

peak-to-peak voltage you observe in CH 2. You can use the scope’s MEASURE function to

automatically display the peak-to-peak signal amplitude.

• Make sure you scan through a wide enough frequency range that you can record the FWHM of the

signal. Record the voltage amplitude at 20 points (at least) around the location of the resonance.

Repeat this procedure for a lower value of the resistance, for example 10 Ω, and a much higher value,

for example 500 Ω. Make sure you record the value of R for each voltage table you record.

When you are finished, replace the 150 mH inductor with the large copper ring. Be careful: the ring

is quite heavy! Sweep with the function generator through a range of frequencies until you find the
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resonance frequency ω0. Using this measurement and the value of C, estimate (with uncertainties) the

inductance L of the copper ring.

Phase of Driving Voltage and VR

• Replace the copper ring in your setup with the small inductor you used earlier.

• Set the decade resistor box to a resistance of 30 Ω.

• Make sure you can see the driving signal on CH 1 and the voltage across the resistor on CH 2. Note

whether the voltage across the resistor is ahead of, behind, or the same as the driving voltage.

• Vary the frequency of the function generator to determine the relationship between the driving

voltage and the current in the circuit at, above and below the resonant frequency ω0, and record

your qualitative observations.

• For five values of the frequency at and around ω0, measure the phase difference between the

driving voltage V (t) and the current in the resistor. You can do this using the CURSOR function

of the scope. Measure the total time for one full cycle of the driving signal, Td, and then measure

the time difference tR − td between the max (or min) of the driving signal and the max (or min)

of the signal across the resistor.

• Be sure to record error and propagate it. The phase difference ϕ is equal to

ϕ = 2π
tR − td
Td

Note that this formula implies that a positive phase shift corresponds to the driving voltage peaking

earlier, and therefore to the left of, the resistor voltage.

Phase of V (t), VL, and VC

Above you found that the driving voltage and the voltage across the resistor (and thus the current in

the circuit) are in phase at the resonant frequency. In this last part of the lab you will observe the phase

differences between the driving signal V (t), the inductor VL, and the capacitor VC .

Phase Shift of the Inductor

Keep the circuit in its original configuration, as in Fig. 9.5, but increase the frequency of the function

generator to a value well above resonance — e.g., 10 kHz. At a sufficiently high frequency, XL =

ωL → big, and XC = 1/ωC → small. That is, the inductor dominates the circuit, so its reactance will

determine the overall phase shift ϕ that you observe in the voltage across the resistor.
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To determine the phase shift, just measure the phase of the voltage across the resistor as before. It

is only necessary to make one measurement in this case. The expression for the measured phase shift

also remains the same as before.

Phase Shift of the Capacitor

Again, leave the configuration of the circuit alone, but decrease the frequency to well below resonance

— e.g., 10 to 50 Hz.

At this low frequency, XL = ωL → small, and XC = 1/ωC → big. That is, the capacitor dominates

the circuit, and its reactance determines the overall phase shift ϕ that you observe in the voltage across

the resistor. To determine the phase shift, the procedure is the same as what you tried above.

Summary of data:

• Resonance section:

– Capacitance C and inductance L of elements
– Vpp vs frequency, for three values of resistance R
– Resonance frequency ω0, for unknown L

• Phase shifts:

– Phase difference between voltage and current: frequencies close to resonance
– Phase shift for high frequency
– Phase shift for low frequency

9.5 Analysis

Resonance of the RLC Circuit

1. For the three resistor values you used, plot the peak-to-peak voltages you recorded as a function

of frequency. Put all three plots on the same set of axes, and normalize each to the maximum

voltage from each dataset.

2. What is the resonant frequency of the circuit you observed? Report an angular frequency, ω. Be

sure to record an error for your measurement.

3. Calculate what the resonant frequency should in theory be by reading the values off the circuit

elements and using the formula for at the resonant frequency. Remember to propagate errors.

Does your measured value agree with the theoretical value within error? What is your relative

accuracy?

4. Using your plots, calculate the FWHM∆ω for each set of data. Be sure to estimate an uncertainty.
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5. What happens to the resonant frequency when R is increased? What happens to the full width

at half max?

6. For the L you measured using the large copper ring, how does the estimate compare to the value

marked on the inductor?

Phase of Driving Voltage and VR

Compare your measured values of the phase difference with the theoretical value derived for ϕ:

tanϕ =
ωL− 1/ωC

R

Remember to use the value for f recorded from the oscilloscope and convert this to an angular frequency

ω. Assume that the internal resistances of the circuit components, other than the decade resistor box,

are negligible. Does your measured value agree with the theoretical value, within error? If there is a

large discrepancy, does accounting for the 50 Ω output impedance of the function generator help?

Phase Difference of V (t) and the Capacitor/Inductor

Does the inductor voltage VL lead the driving voltage by 90◦, as expected? Does the capacitor voltage

VC lag by 90◦? If there are any discrepancies, can they be explained by errors in your measurements?

General Questions

We mentioned that the inductor resists signals with high frequencies. What property of the inductor

causes it to behave this way? HINT: Think of an inductor as a current loop or solenoid, and consider

what happens when you try to vary the current through the loop.

Similarly, given what you know about how capacitors charge and discharge, why do you think it

tends to block DC signals but likes high frequency AC signals?

You observed the behavior of the capacitor and inductor indirectly, by looking at the signal across

the resistor. Why is this necessary?
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Experiment 10

Absorption of Beta and Gamma Rays

10.1 Purpose

The objectives of this experiment are: to study the behavior of beta (β) and gamma (γ) rays passing

through matter; to measure the range of β-particles from a given source and hence to determine the

endpoint energy of decay; and to determine the absorption coefficient in lead of the gamma radiation

from a given source.

Safety Note

The radioactive sources used in this experiment are extremely weak and therefore can be handled without

any danger of overexposure to radiation. However, it is always prudent not to handle any radioactive

source more than is necessary, and to clean off after handling the sources and lead sheets.

10.2 Introduction

All nuclei heavier than lead (and many isotopes of lighter nuclei) have a finite probability of decaying

spontaneously into another nucleus plus one or more lighter particles. This phenomenon, known as

radioactivity, was first investigated systematically at the end of the nineteenth century. At the time,

physicists roughly classified the decay products of radioactive nuclei into three basic categories, based

on the particles’ mass, charge, and ability to penetrate matter. Since the fundamental nature of these

particles was not understood, they were simply called α (alpha), β (beta), and γ (gamma).

Alpha particles: One of the decay products may be a bound state of two protons and two neutrons,

the stable nucleus of a helium atom. This is the α particle.

Beta particles: Alternatively, a nucleus with more neutrons than it can stably maintain may decay by

emission of an electron (β-decay), which corresponds to the conversion of a neutron to a proton.

97
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These electrons may emerge with a kinetic energy of up to several million electron-Volts (MeV).

Gamma particles: After α or β decay, the residual nucleus may be left in an excited state. (The

nucleus has discrete energy levels, just like an atom as a whole.) When the nucleus decays to a

lower energy state, a photon is emitted to conserve energy, as in an atomic transition. However,

the typical energies of these so-called gamma ray photons are on the order of MeV, almost 106

times as large as the energy released during atomic transitions.

NOTE: Due to the small energies acquired by individual particles, the typical energy unit used in particle

physics is the electron-Volt, or eV. It is defined as the energy acquired by a single electron that has been

accelerated from rest through a potential difference of one Volt.

Details of Beta Decay

β particles, or electrons, are emitted by the decay of neutrons in radioactive nuclei. It may surprise you

to discover that neutrons are not stable particles; on average, a free neutron outside a nucleus will live

for about 15 minutes before it decays into a proton, electron, and an antineutrino (an extremely light,

neutral particle).

Figure 10.1: The β-decay of a neutron into a proton, electron (e−), and electron antineutrino (ν̄e).

Consider a single neutron of mass mn. In the typical units of particle physics, mn = 939.5 MeV/c2,

where c is the speed of light. When the neutron decays, its mass-energy E = mnc
2 = 939.5 MeV

is used to create the decay products. Most of the energy immediately goes into creating the proton

(mp = 938.2 MeV/c2); a small bit creates the mass of the electron (me = 0.511 MeV/c2); and a

negligible fraction creates the antineutrino (mν̄e ≈ 0). Whatever happens to be left over goes into the

kinetic energy of the products.

In early experiments on β-decay, it was observed that the electrons do not simply emerge from the

nucleus with the same energy every time (see Fig. 10.2). Rather, due to the presence of the antineutrino

(which can use up the kinetic energy available in the decay), the β has a spectrum of possible energies.
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These range frommec
2 — the electron is created, but has essentially no kinetic energy — to (mn−mp)c

2

— the electron soaks up nearly all of the extra kinetic energy available in the decay.
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Figure 10.2: Total energy spectrum (i.e. rest plus kinetic energy) of β-particles emitted by a decaying

neutron.

Interaction with Matter: Energy Loss and Range of Beta Particles

When an energetic charged particle traverses matter, it will give electrostatic impulses to nearby electrons

and thus ionize atoms in the material. Because of its ionizing action, a charged, incident particle in

matter will continuously lose kinetic energy, eventually coming to rest after traversing a path length

called its range.

For a particle of known charge and mass, there will be a unique range associated with each incident

energy. A formula can be theoretically deduced for the rate of energy loss — and hence the range —

of a particle (of known mass, charge, and initial velocity) in a particular “stopping” material of known

electron density and ionization potential.

In each interaction with atomic electrons, however, an incident electron may be scattered through

a wide range of angles. As it traverses the material, it may follow a rather tortuous, winding path,

especially at low energies. The actual path of the electron may be considerably longer than the observed

distance that it penetrates into the material. For this reason, the incident electron range is not sharply

determined, and the theoretical calculation is of limited usefulness for electrons of less than 1 MeV in

energy. In this experiment, therefore, we will use an approximate empirical relationship1 between range

1L. Katz and A. S. Penfold, Rev. Mod. Phys. 24 (1952), 1.
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Figure 10.3: Typical absorption curve of β particles in a material.

and energy for low energy electrons:

r =
0.412 g cm−2

ρ
E1.29, (10.1)

where r is in cm, E is in MeV, and ρ is the density of the stopping material in g cm−3.

Interaction with Matter: Absorption of Gamma Rays

Gamma rays are electromagnetic radiation, but their energies are so high — and hence their wavelengths

are so short — that they effectively behave like particles. Gamma rays are electrically neutral, so they

do not ionize matter in the same way that electrons do. Instead, they will interact with absorbers in

one of three ways:

Compton Scattering: This refers to a photon-electron collision in which the energy lost by the scat-

tered photon is given to the recoil electron in the material.

Photoelectric Effect: The photon is absorbed by an atom as a whole, releasing an electron with kinetic

energy equal to Eγ − Eb, where Eγ is the photon energy and Eb is the relatively small binding

energy of the electron in the shell from which it is released.

Pair Production: If the photon has energy greater than 1.02 MeV/c2 (twice the electron rest mass),

it can create an electron-positron pair in the neighborhood of a nucleus. This will not be an issue

in today’s experiment, since we do not use such an energetic source.



10.2. INTRODUCTION 101

Energy (MeV)

1 10

Energy (MeV)

1 10

)
-1

 (
c
m

µ
a
b
s
o
rp

ti
o
n
 c

o
e
ff
ic

ie
n
t 

0

0.5

1

1.5

2

-110

Figure 10.4: Linear absorption coefficient for γ rays in lead, as a function of energy.

The total probability that a γ particle will interact in a given block of material is the sum of the

probabilities of these three processes. It also depends on the photon’s energy and the the atomic

structure of the material. Typically, these numbers are folded into a single parameter µ, called the linear

absorption coefficient of the material. This number, plotted for lead2 in Fig. 10.4, physically represents

the probability that a photon will be absorbed in a given unit length of the material it is moving through.

The coefficient is defined by the equation

dN

dx
= −µN , µ in cm−1,

whereN is the number of incident photons and dN is the number absorbed in an absorber of infinitesimal

thickness dx (in cm). As in any process where the rate of decrease is proportional to the number present

(such as the discharge of a capacitor), the solution of this differential equation is

N(x) = N0 e−µx

2J.H. Hubbell and S.M. Seltzer, Report NISTIR 5632 (1995).
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where N(x) is the number of photons passing through x cm of absorber and N0 = N(x) at x = 0.

A Note on Counting Particles: Accuracy and Counting Statistics

Particles decay randomly in time from a radioactive source (over a period shorter compared to the half-

life). When counting particles in a detector, the probability distribution for measuring a given number of

counts in a given time interval is an almost bell-shaped curve, called a Poisson distribution, centered

around some most probable value µ = N0.

The Poisson distribution has standard deviation about the peak of σµ =
√
N0. If N counts are

measured in an interval, the best estimate of the error is σN =
√
N . Note that the magnitude of the

statistical error — your uncertainty in the measurement — increases significantly for trials involving a

very small number of counts.

That is, the accuracy of a count N measured in such an experiment goes like

σN
N

=

√
N

N
=

1√
N

So, for a high counting rate in a given interval — e.g., 900 counts in one minute — the estimated error

will be
√
900 = 30 counts per minute, for 3.3% error. For a much lower counting rate in the same

interval — say 25 counts — an uncertainty of ±5 counts per minute amounts to a 20% statistical error.

To achieve the same precision as in the first case, you would have to collect 900 counts, which would

be a 36-minute measurement at the present rate. While such a long measurement is impractical for this

lab, you should aim for high accuracy by taking longer measurements when necessary.

10.3 Experiment

Detection of Charged Particles

The apparatus used here to observe β and γ particles emitted from radioactive nuclei is a Geiger counter.

Like most other particle detectors, the Geiger counter uses the fact that high energy particles will ionize

matter as they move through. Inside this particular device, the ionization produced by a charged particle

causes a violent electrical discharge.

As shown in Fig. 10.5, the counter consists of a metal cylinder (cathode) with insulating ends

supporting a fine axial wire (anode). When a charged particle enters the chamber, it ionizes the gas

(e.g., argon) inside. Electrons freed during the ionization will drift toward the positively charged anode

wire, accelerated more and more by the rapid increase in electric field near the wire. When an electron

acquires kinetic energy greater than the ionization energy of the gas molecules, it can create by collision

a new ion and electron, which in turn can accelerate and create another ion, and so on, thus initiating



10.4. PROCEDURE 103

Figure 10.5: Basic workings of the Geiger counter used in this experiment.

Figure 10.6: The Geiger counter circuit.

an avalanche of charge. The process, called a Townsend avalanche, is possible only if the voltage

maintained between anode and cathode is sufficiently high.

The basic counter circuit, shown in Fig. 10.6, supplies a positive high voltage of up to 900 V to

the center wire. When an avalanche occurs, current flows through R, the counter side of R drops in

potential, and this negative pulse is fed through C to a stage of amplification and then to a scaling

(counting) device.

10.4 Procedure

The procedure in this experiment is divided into four parts: setting up the Geiger counter; measuring

the ambient radiation in the room, which you must correct for in the experiment; determining the range

r of β particles; and measuring the linear absorption coefficient and energy of γ rays emitted from a

radioactive source.
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Setting up the Geiger Counter

Every Geiger tube that is in good working order has a plateau region in which its counting rate is

relatively insensitive to changes in the high voltage (HV) supply. Before any measurements are taken,

one must calibrate the Geiger tube such that the working voltage is around the plateau region. This

region can be found following these steps:

• Place the source under the tube and increase the voltage from its lowest value until the tube just

begins to count.

• Raise the voltage in 20 V steps while taking 15 s counts for each voltage setting. The curve of

counting rate versus voltage will increase and then eventually start to level off.

• The plateau region is reached once the count rate rises by less than 10% for a 100-volt increase.

Do not raise the voltage further as this may damage the tube due to the continuous breakdown.

Set the HV to a value on this plateau for the remainder of the experiment. If this procedure is followed

correctly, HV variations may then be ignored as a source of error. Plot your calibration results in your

report.

Background Measurement

In order to make accurate counting measurements of the sources, it is necessary to know the counting

rate due to natural background radiation. This natural radiation will lead to excess counts in the Geiger

counter that are not due to your sources. The background must be properly measured and subtracted

out of the data if you are to obtain trustworthy results.

By and large, most of the background radiation affecting the experiment comes from cosmic rays

entering the earth’s atmosphere. In addition, there will be some excess counts due to the Cs-137 gamma

sources nearby in the room, whose gamma rays can pass through the side of the detector. At a distance

of 30 cm, for example, a Cs-137 source contributes roughly as many counts as the natural background

radiation; doubling the distance reduces its contribution to one-fourth this level.

It is best to try to minimize these secondary effects by keeping your detector far from other sources,

and by shielding your own Cs source with the lead sheets when not in use. Ideally, you want to keep

these background effects constant during the course of the experiment. If all of your data are shifted by

roughly the same constant amount, then it is possible to isolate the desired results by subtracting out

this constant background.

Range of β Particles

You will use the unstable isotope Thallium-204 to generate the β particles in this experiment. The

range of the most energetic of the decay electrons can be determined by placing aluminum foil absorbers
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between the source and the Geiger counter.

Figure 10.7: Setup of the Geiger counter, source, and absorbers for β range measurement.

Refer back to the typical absorption curve in shown in Fig. 10.3. The maximum range r is the point

where the absorption curve meets the background. You should start by making a careful measurement

of background, and you should repeat this measurement again after taking the absorption curve to check

for constancy.

• Place the Thallium source on the second shelf below the detector, as shown in Figure 10.7, to

maximize the number of counts while leaving enough room to stack aluminum absorbers.

• Begin taking measurements for the absorption curve, adding aluminum foils until the counting

rate reaches the background level. Adjust the preset counting interval as needed to keep the

relative uncertainties in the counts small.

• Note: The thickness of the aluminum absorbers is 2 mils, i.e. 0.002 inches, (not millimeters).

• Make a table of the results, including the background level, and include estimates of the statistical

error in each measurement.

• Note that you should not subtract background from your data for this measurement.

Absorption of γ Rays

Your γ-ray source will be Cesium-137, which decays with a half-life of 30 years to Barium-137. As

shown in Fig. 10.8, a small fraction of the time a Cs nucleus will β-decay directly to the ground state
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of Barium-137. More than 90% of the time, however, the nucleus emits a 0.52 MeV β-particle and

transforms into an excited state of the Ba nucleus. Almost immediately, the nucleus relaxes down to its

ground state and emits a 0.662 MeV γ ray.

Figure 10.8: Decay modes of Cesium-137.

Lead absorbers are used for the gamma absorption study. They are thick enough (0.062 inches) so

that one absorber will stop all the β particles emitted during Cs decay.

Figure 10.9: Setup of the Geiger counter for measurement of γ particles.

The gamma rays are detected by means of the same Geiger counter already used. Note that the

efficiency of the Geiger counter for detecting photons is much less than for detecting the β particles,

since it depends on a somewhat indirect detection scheme. For a photon to be detected inside the

counter, it must collide with the gas or wall of the counter and liberate an electron to initiate the the
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discharge cycle.

Figure 10.9 represents one of the effects of γ ray scattering in the lead sheets. Increasing the area

of lead through which the γ rays pass tends to increase, rather than decrease, the number of counts one

measures, since gamma rays which otherwise would not have entered the detector may now backscatter

into it.

The arrangement shown in Fig. 10.10 is designed to reduce the backscattering effect. By keeping

the lead sheets high above the source, one simultaneously reduces the excess area exposed to γ rays

and the effective difference in area between the top and bottom sheets.

Figure 10.10: Setup of the Geiger counter for measurement of γ particles.

• Take measurements for an absorption curve. Note how this differs fundamentally from β absorp-

tion: there is no maximum range for γ rays passing through lead. Rather, one expects to lose a

fixed fraction of the remaining γ rays passing through each successive layer of lead absorber. For

this reason, the theoretical absorption curve never intersects the background curve. When the

absorption curve is plotted on semi-log scale with background subtracted, the exponential decay

curve appears as a straight line.

• Adjust the preset counting interval as needed to keep the relative uncertainties in the counts small.

• Make a table of the data and estimated errors.

You may quickly plot the background-subtracted data in the lab to check your work; otherwise, you are

free to finish your work at home.
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Summary of data:

• Background count rate
• Thickness of aluminum sheets, thickness of lead absorbers
• Count rate vs absorber thickness, for Tl source
• Count rate vs absorber thickness, for Cs source

10.5 Analysis

Estimate of the Range of Beta Particles

• Using your count table for the absorption of β particles by aluminum, make a semi-log plot of the

counts vs. the absorber thickness. If your measurements are of different durations, you will need

to scale them to a constant duration which is convenient for graphing.

• Determine the approximate value of the maximum range from the graph.

• Use eq. (10.1) to compare your result with the value of 0.765 MeV for the maximum beta energy

for Thallium-204 as measured in a magnetic spectrometer. Note that the density of aluminum

(Al) is ρ = 2.702 g cm−3.

Linear Absorption Coefficient µ

• Plot your γ ray rate counts versus lead thickness; first transform the count data by taking the ln.

• Perform a linear fit to the data, and find the absorption coefficient µ from the slope of the fit.

• Use this result and Fig. 10.4 to estimate the energy of the gamma rays. Compare with the

accepted value. What factors limit the precision of this estimate?

• The efficiency of the Geiger counter is much lower for γ rays than for α or β particles. How else

could you measure γ rays? What about α and β particles?



Appendix A

Measurement and Error Analysis

A.1 Measurement, True Values, and Errors1

In a typical experiment, we are usually interested in determining the value of one or more physical

quantities: the width of a block of glass, the period of a pendulum, the mass of a body, and so on.

Such measurements are always subject to influences and uncertainties that will affect the observations.

It is the job of the experimenter to try to minimize these effects, but it is never possible to completely

eliminate them. Therefore, we need a method to quantitatively handle the errors that creep into every

experiment; i.e., we need to perform a statistical analysis of our data.

Case Study in Randomness: Fairness of a Coin

Consider the following seemingly trivial experiment. A student wants to decide if a coin is fair (or

“unbiased”). If the coin is fair, then when she flips it, the number of times it lands heads-up should

roughly equal the number of times it lands heads-down.

The student flips the coin 50 times and counts the number of heads n. She expects that if the coin

is fair, heads should come up half the time, giving her a count n = 25. In this trial, she actually counts

28. To check that she didn’t miscount, she decides to flip the coin another 50 times. This time, she

counts n = 19 heads.

Intrigued, the student decides to repeat her experiment a large number of times N (e.g., N = 100).

After finishing all 100 trials, she histograms the frequency of each head count (see Fig. A.1). The

histogram indicates that over the course of 100 trials, the most common result2 is 25 heads out of 50

tosses. However, there is significant spread in the data: six trials have a head count under 20; ten trials

have a count greater than 30.

1Adapted from “Introduction to Experimental Error,” Susan Cartwright, University of Sheffield, UK (2003).
2This is referred to as the mode.
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The student also decides to calculate the average (or mean) head count n̄ for the 100 trials, knowing

that this number is related to the “most likely” outcome of the experiment. She expects 25 heads on

average, but calculates

n̄ =
1

N

N∑
i=1

ni = 24.79

This result is close to 25, but not exactly. The difference is small, but she must ask: is this evidence

that the coin is slightly biased? Or are random fluctuations that occur from trial to trial responsible for

the discrepancy? How should she quantify these fluctuations?
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Figure A.1: LEFT: histogram of the number of head counts recorded in 100 trials when tossing a fair

coin 50 times per trial. RIGHT: same histogram for 10,000 trials.

Case Study in Precision: Thickness of a Block of Glass

Random fluctuations are a source of uncertainty3 in all experimental quantities. However, these fluc-

tuations may sometimes be too small to be observed. In such cases, we remember that physical

measurements of infinite precision are impossible. Hence, we can use the resolution of our measurement

devices to estimate the uncertainties in our observations.

For example, suppose a student is asked to measure the width of a block of glass. He uses a plastic

ruler accurate to the nearest millimeter, and finds that the block appears to be 10.0 mm thick. Since

he is careful, he tries the same measurement at various points along the length of the block. Each time

he gets the same result: 10.0 mm.

3Uncertainty is often referred to as “experimental error.”
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Does this set of observations suggest that the block is 10.0 mm thick, exactly? No; it only indicates

that any fluctuations in the length of the block are smaller than what can be measured with a cheap

ruler. In this situation, we quantify the uncertainty in the measurement as one half of the smallest

division that appears on the scale of the instrument. (The rule also holds for instruments with digital

readouts.) For a ruler accurate to the nearest mm, that means an uncertainty of ±0.5 mm.

Method Typical Error

cheap ruler ±0.5 mm

draftsman’s ruler ±0.2 mm

calipers with vernier scale ±0.05 mm

traveling microscope ±0.005 mm

interferometer ±0.00001 mm (if n known accurately)

Table A.1: Experimental error on the thickness of a glass slab.

The resolution lets us place an upper bound on the unobservable but present random fluctuations in

the measured quantity. As Table A.1 indicates, we can improve the resolution by using more sensitive

instruments.

Importance of Experimental Errors

The scientific approach to understanding the world is based on a number of fundamental assumptions

and techniques. Two of the most important are:

• Experiments are reproducible. If you say experiment X produces result Y , I should be able to do

experiment X myself and expect to get result Y .

• Theories are tested by experiment. If I assert that theory A is an improvement on theory B, I

should be able to point out experimental results that are explained by A and not B, and also

predict the results of new experiments yet to be performed.

Clearly, uncertainties are vital to our interpretation of experimental results. If two individuals perform

an experiment, it is likely that they will not report exactly the same result due to random fluctuations.

However, the relevant question is not whether their results are exactly the same, but whether they agree

within the range set by experimental errors. If so, the results are said to be consistent. If not, the

discrepancy may be due to an interesting physical effect that should be investigated.

Reporting Results

Hopefully you are now convinced that whenever something is measured, an uncertainty is always involved

in that measurement. The complete specification of a physical quantity always includes this uncertainty,
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as well the units in which the quantity was measured. For example:

1. m = 9.0 kg: WRONG — no uncertainty.

2. m = 9.0± 0.3: WRONG — no units.

3. m = 9.0± 0.3 kg: RIGHT.

A.2 Precision and Accuracy

Precision

The uncertainty (or “experimental error”) reported above is perhaps more accurately described as the

precision of the measurement. The uncertainty reflects the range of values in which we expect to

measure a physical quantity, most of the time. In other words, it is the typical scatter that we see in

data when we make repeat measurements, and it is related to the reproducibility of a measurement. A

precise measurement is one in which the scatter of the data is small.

Accuracy

Independent of scatter, a value is said to be accurate if it is numerically close to some “true” value. We

can define the accuracy (or “relative error”) of an experimental result as

accuracy (in %) = 100× |expt− true|
true

Note how precision and accuracy are far from the same thing. Values are precise when the scatter

in the values about some mean is small. However, this does not imply that the values are close to the

true value. Ideally, we want to achieve both accuracy and precision; i.e., we want to obtain results close

to the true value with little scatter.

A.3 Types of Errors: Statistical and Systematic

There are two fundamentally different types of experimental error. Statistical errors are random in

nature: repeated measurements will differ from each other and from the true value by amounts which

are not individually predictable, although the average behavior over many repetitions can be predicted.

For example, the spread in the number of heads n in our coin-flipping experiment, or the resolution

uncertainties of an instrument, are statistical errors. There is an extensive mathematical literature

dealing with statistical errors, and most of the rest of this note will be concerned with them.

Systematic errors arise from problems in the design of an experiment. They are not random, and

tend to affect all measurements in some well-defined way. For example, suppose you are asked to read
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Figure A.2: Precision and accuracy visualized as a bullseye: imprecise and inaccurate results (left);

precise but not accurate (center); precise and accurate (right).

the temperature from a mercury-in-glass thermometer. The position of your eye with respect to the

scale on the glass introduces a parallax error — a reading error related to the relative position of the

scale and the top of the mercury column.

If you consistently view the scale from below the top of the column, your temperature measurements

will be consistently too low. If you consistently view the scale from above the top of the column, all

of your temperature measurements will be too high. In either case, your data points will systematically

shift away from the correct readings.

Systematic errors can be extremely subtle and difficult to diagnose. Repeating measurements usually

won’t help, but you can identify them by looking for some of the following common symptoms:

• Curved lines on a plot appear where straight lines were expected (especially on log plots);

• Nonzero values appear where zero was expected (e.g., nonzero intercepts in plots);

• Inability to reproduce results, even on the same equipment. This could indicate a dependence on

ambient temperature or pressure, or on the running time of the apparatus (common with lasers).

In experiments in the undergraduate lab, systematic errors are often discovered by hindsight during

the analysis phase of the experiment. Ideally, one would not want to do things this way; it is better

to think about and record possible sources of systematic error before starting an experiment, and then

attempt to eliminate these effects as measurements are conducted. In practice, this can be quite a

challenge. The ability to identify systematics and neutralize their effects is a skill acquired through

much practice.
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Figure A.3: Systematic errors introduced by parallax. From Les Kirkup, Data Analysis with Excel: An

Introduction for Physical Scientists, Cambridge (2002).

A.4 Statistical Uncertainties in Measured Quantities

When we record data in the laboratory, our task is to provide a quantitative estimate of the uncertainties

in our measurements. This task divides into two parts: first, we estimate the errors on directly measured

quantities; second, we use these to calculate the resulting errors on derived quantities.

Basic Statistical Concepts

For single measurements, our only guide to evaluating the error is our knowledge of the experimental

setup and our own capabilities. We already discussed using the resolution of an instrument to roughly

estimate the uncertainty on a single measurement. This is unlikely to be very accurate, but it is still a

reasonable guide to the precision of the final result.

Repeated measurements provide a more satisfactory estimate, because we can use the spread in

the observed values to derive the characteristics of the underlying random error. Suppose we make N

independent measurements of some quantity x. The average or mean of the N samples is the sum of

the measured values divided by the total number N :

x̄ =
1

N

N∑
i=1

xi

As mentioned earlier, the mean of a sample is an estimate of the “true” value of x. The uncertainty in

this estimate is given by the standard deviation, also known as the root-mean-square (RMS) deviation

s:

s =

√∑N
i=1(xi − x̄)2

N − 1
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The quantity s is the best estimate of the error on an individual measurement xi. However, our best

estimate of the true value is the mean x̄, not any individual measurement. The error on this is called

the standard error of the mean:

x̄± s√
N

That is, given a data sample {xi}, we expect that the mean x̄ — our estimate of the true value of x

— should usually fall within the range given by ±s/
√
N . Note that this range decreases in size as the

sample size N goes up. As we increase the number of measurements, our estimate of the mean and

the precision of our result improves.

The Gaussian Distribution

It is often convenient to assume that the distribution of measurements about the true value is given by

a bell-shaped curved called the Gaussian probability distribution:

P (x) dx =
1√
2πσ2

exp

(
−(x− µ)2

2σ2

)
dx

In this expression, µ is the true value (or mean, or “expectation value”) of the quantity we are trying to

measure; σ, the standard deviation, is the typical spread expected for measurements of µ; and P (x) dx

is the probability that a given measurement will fall into the interval between x and x + dx. In the

language of statistics, we say that x is a Gaussian random variable.

For certain types of error, it can be proven mathematically that this is the appropriate formula. In

such cases, µ and σ can be predicted before performing any measurements. As an example, consider

again the experiment in which a student flips a coin to determine its fairness. A well-known result from

elementary statistics tells us that if the coin has a probability p of landing heads up5, then for n tosses

we expect

µ = np

σ =
√

np(1− p)

Look at the right panel of Fig. A.1. As the student increases the number of trials, the distribution of

the head count starts to look more and more like a bell-shaped curve. In the limit as N → ∞, this

distribution will become a perfect Gaussian curve.

In practice, we do not measure µ and σ, because no one has time to let N → ∞. Rather, we

have to use a finite data sample to estimate their values. You probably already guessed that the best

estimator for µ corresponds to the arithmetic mean x̄, and the estimator for σ is the standard deviation

s. Note that while s refers to the standard deviation of a finite data set and σ refers to the theoretical

5For a fair coin, p = 0.5.
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spread in the data, the symbols σ and s tend to be used interchangeably. In a report, you would record

your observation of µ as

µ ≈ x̄± σx̄ = x̄± σ√
N

≈ x̄± s√
N

For example, note how the estimate of µ improves in the coin toss experiment when the student increases

N from 100 to 10,000:

x̄100 = 24.79± 3.41√
100

= 24.79± 0.34

x̄10000 = 25.040± 3.572√
10000

= 25.040± 0.036
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Figure A.4: Graphical representation of the Gaussian distribution. About 68.3% of the measurements

of x should fall within one σ of µ; 95.5% should fall within 2σ of µ; and 99.7% should fall within 3σ of

µ.

A.5 Errors on Derived Quantities

In most experiments, the desired quantity is not measured directly, but is calculated from other quantities

which are measured. In this case we need to know how to deduce the error on the calculated result

from the estimated errors on the measured values.

Error on f(x) Due to an Error in x

Suppose we have measured x to be X ± ∆X. The quantity we want to determine is some function

f(x), and f(X) = F . What is the error on F , ∆F , corresponding to ∆X?
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Common sense does work; we can evaluate f(X+∆X) and f(X−∆X) to get F ±∆F . However,

it is often convenient to use the fact that

df

dx
= lim

∆X→0

∆F

∆X

If ∆X is small, this gives

∆F ≈
∣∣∣∣ dfdx

∣∣∣∣
x=X

∆X,

or in a more standard notation,

σf =

∣∣∣∣ dfdx
∣∣∣∣σx

We take the absolute value because (by convention) we choose ∆F and ∆X (σf and σx) to be positive.

Figure A.5: Relationship between uncertainty of a function and slope.

Examples

Consider a measured quantity x with uncertainty σx. The resulting uncertainty in f(x) is

f(x) σf

x2 2xσx

xn nxn−1σx

sinx (cosx)σx

lnx 1
xσx

NOTE: when propagating uncertainties in angles, the angles must always be expressed in radians. Also

note that the formula for the error on a logarithm applies only to natural logarithms — the derivative

of log10 x is not 1/x.
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Functions of More than One Variable

Suppose we measure two quantities x and y, and the value that we need is a function of both, f(x, y).

What is the uncertainty in f given errors in x and y? If x and y are independent, and the uncertainties

are relatively small, then we add the errors in quadrature 6:

σ2
f =

(
∂f

∂x
σx

)2

+

(
∂f

∂y
σy

)2

As in the single variable case, all of the partial derivatives are evaluated at the measured values X and

Y . Note that this equation is easily extended to the case where f is a function of N variables:

σ2
f =

N∑
i=1

(
∂f

∂xi
σxi

)2

Examples

The following formulas are derived from the expression above:

f(x) σ2
f

x+ y σ2
x + σ2

y

xy (yσx)
2 + (xσy)

2

x/y (σx
y )2 + (

xσy

y2
)2

A.6 Combining Data: Fits and Averages

We have already seen how repeated measurements of a quantity can be averaged to obtain an improved

estimate of its true value. This is a simple case of combining data. We shall often meet more complex

cases: for example, we want to combine two measurements 1.5± 0.2 and 1.70± 0.05. It is intuitively

obvious that the true value is likely to be between 1.5 and 1.70, but probably closer to the latter (the

more precise value).

The Weighted Mean

Suppose you have measured the same quantity using several different techniques, which naturally give

different errors. How do you combine the results to get the best possible estimate of the true value?

Clearly, you want to somehow weight your data so that the more precise values have more influence

on the final answer. For Gaussian variables with independent errors, the appropriate weight is 1/σ2
i . In

6For a derivation of this expression, see Stuart L. Meyer, Data Analysis for Scientists and Engineers, Wiley (1975).



A.6. COMBINING DATA: FITS AND AVERAGES 119

other words, we define the weighted mean by

x̄w =

∑
i xi/σ

2
i∑

i 1/σ
2
i

and the standard error of the weighted mean by

σx̄w =

(
1∑
i

1
σ2
i

) 1
2

Both of these expressions reduce to the usual values when the σi = σ (the errors are all the same):

x̄w =

∑
i xi/σ

2∑
i 1/σ

2
=

1/σ2
∑

i xi
1/σ2

∑
i(1)

=

∑
i xi
N

= x̄

and

σx̄w =

(
1∑
i

1
σ2

)1/2

=

(
1

1
σ2

∑
i(1)

)1/2

=

(
σ2∑
i(1)

)1/2

=

(
σ2

N

)1/2

=
σ√
N

= σx̄

In the weighted average, data points with large uncertainties are guaranteed to contribute almost nothing

to the overall mean. Provided that N is reasonably large, the weighted and unweighted means should

be roughly the same. If they give drastically different values, it is likely that your error estimates are off.

The Unweighted Linear Least Squares Fit

A common situation is the case where two variables or suitable functions of two variables are linearly

related:

y = ax+ b,

where a and b are unknown constants. Typically, the data consist of N pairs of observations (xi, yi)

and the desired physical quantity is a or b or both. The problem is to derive the values of a and b which

best fit the observations, and the corresponding uncertainties σa and σb.

To find the best line through x-y data, we need to decide on a measure of the goodness of fit of

the line to the data. Fig. A.6 graphically depicts what we want to do. At each point (xi, yi), there is a

fitted value of y ŷi = axi + b. The best fit line should somehow minimize the differences ∆yi = yi − ŷi

between the fitted values and the data points, known as the residuals of the fit.

The standard best-fit algorithm used by most statistics packages is the Method of Least Squares,

which involves minimizing the quantity

χ2 =

N∑
i=1

(yi − ŷi)
2

σ2
i

,
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Figure A.6: x-y plot showing residuals. From Kirkup (2002).

where σi is the uncertainty in the data point yi. The expression χ2 (chi-square) is the weighted sum

of squares of the residuals. For simplicity, let’s assume for now that σi = σ, i.e., all the errors are the

same. To find the best fit line, we write χ2 in terms of the fit parameters a and b and differentiate with

respect to a and b:

χ2 =
∑
i

(
yi − axi − b

σ

)2

∂χ2

∂a
= 0 = − 2

σ2

∑
xi(yi − axi − b)

∂χ2

∂b
= 0 = − 2

σ2

∑
(yi − axi − b)

Manipulating these equations to solve for a and b, we find

a =
N
∑

xiyi −
∑

xi
∑

yi
D

b =

∑
x2i
∑

yi −
∑

xi
∑

xiyi
D

where

D = N
∑

x2i −
(∑

xi

)2
The uncertainties in the fit parameters are tedious to derive; if all of the uncertainties are equal (σi = σ),

you can show that

σa = σ

(
N

D

)1/2

σb = σ

(∑
x2i

D

)1/2
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These expressions look intimidating, but take comfort in two things: they are actually rather easy

to calculate using a spreadsheet; and most statistics packages contain functions that automatically

estimate a, b, σa, and σb for you
7.

The Weighted Linear Least Squares Fit

On a few rare occasions (to be discussed momentarily), you will want to perform a weighted least squares

fit to your data that accounts for different σi. In this case, the expressions for the fit parameters and

their standard errors change slightly:

aw =

∑ 1
σ2
i

∑ xiyi
σ2
i

−
∑ xi

σ2
i

∑ yi
σ2
i

E

bw =

∑ x2
i

σ2
i

∑ yi
σ2
i
−
∑ xi

σ2
i

∑ xiyi
σ2
i

E

and

σa,w =

(∑
1/σ2

i

E

)1/2

σb,w =

(∑
x2i /σ

2
i

E

)1/2

where the denominator E is given by

E =
∑ 1

σ2
i

∑ x2i
σ2
i

−
(∑ xi

σ2
i

)2

The bad news is that few statistics packages automate these functions. The good news is that you will

need to use them rarely, if ever.

Checking the Fit with the Residuals

Once you have completed the fit, a very revealing technique to test its goodness is to examine the

distribution of residuals, ∆y. Specifically, one usually plots the residual ∆y = y− ŷ on the vertical axis

against x. If the fit is good and only random errors exist to obscure the true value of y at any x, then

residuals should be scattered randomly about the ∆y = 0 axis.

If we can discern a pattern in the residuals, then one or more factors may be affecting the data:

1. We have chosen the wrong equation to fit to the data, or a systematic error is present.

2. We should be using a weighted fit, because the uncertainties in the y values are growing or

shrinking as a function of x.
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Figure A.7: Ideal distribution of residuals, with no discernable pattern. From Kirkup (2002).

Typical plots of residuals which illustrate patterns that can emerge are shown in Figs. A.7 to A.9.

Note that if the errors on y are Gaussian, you should expect to see about 2/3 of the residuals

(68%) lying on the line ∆y = 0 within their 1σ error bars. If too many points lie off the line, you

have underestimated your errors, or there is a systematic effect. If too few lie off the line, you have

overestimated your errors, or the errors are not really all independent. If the errors are truly Gaussian,

it is highly unlikely (1 in 2000 chance) that all the ∆yi should be within 1σ of zero. If this happens,

there must be something wrong!

A.7 Quoting Errors

Once we have analyzed our data, we must present and correctly interpret our results. The aim here is

to provide the information in a manner that is easily grasped by a reader who is not necessarily familiar

with the details of the experiment.

Quoting the Numbers

Error estimates should not be quoted to unjustified precision. Usually one or two significant figures is

enough: e.g., 14.2± 0.6 m or 14.18± 0.17 m are acceptable. If you are going to use these numbers in

subsequent calculations, beware of round-off errors that result from throwing away too many significant

figures too early. (This is typically not a problem if you do all your calculations using a spreadsheet.)

Once you have decided how many significant figures to use in your uncertainty, round the main value

to the same number of decimal places. If using scientific notation, always use the same exponent for

7Example: the LINEST function in Excel and OpenOffice.
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Figure A.8: Residuals revealing an incorrect equation fitted to the data. From Kirkup (2002).

the main figure and its uncertainty:

h = (6.62606876± 0.00000052)× 10−34 J s, not h = 6.62606876× 10−34 ± 5.2× 10−41 J s

When reporting numbers, favor scientific notation or metric prefixes over presenting numbers with long

strings of zeros. For example,

25± 1 µm and 2.5± 0.1× 10−5 m

are much easier to read and understand than

0.000025± 0.000001 m

In summary:

• Unless instructed otherwise, do not quote errors to more than two significant figures.

• Quote values such that they have the same number of decimal places as the error.

• When using scientific notation, quote the value and error with the same exponent.

• When reporting a numerical value, never forget the error or the units (unless the value is dimen-

sionless).

What to Say About Errors in Primary Quantities

As you measure quantities, try to work out errors as you go along. Do not wait until you have a final

answer and then think about the uncertainties. This will often help improve your results. If, during the
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Figure A.9: Pattern in residuals suggesting weighted fit should be used. used. From Kirkup (2002).

course of the experiment, you find that some effect is contributing to the statistical errors in your data,

you can take steps to mitigate the effect and improve your results.

When discussing error estimates in your lab notebook or final report, you should be as specific as

possible. That is,

• Carefully state the source or sources of uncertainty, how you estimated the quoted values, and

whether the resulting error is statistical or systematic.

• If the quoted value is a mean of N observations, state N , and make clear that the quoted error

is the standard deviation (i.e., the error on an individual measurement) or the standard error of

the mean.

• Combine different sources of statistical error by adding in quadrature: σ2
tot = σ2

1 + σ2
2 + . . ..

• If you are able to quantify systematic errors, report them separately, e.g.,

1.57± 0.09(stat)± 0.05(sys) kg

What to Say About Errors in Derived Quantities

When reporting your results to the outside world, you do not need to derive or quote the basic error

formulas used to propagate your uncertainties. Your intended readers will be trained scientists who

expect you to do things right. While you should not go through lengthy derivations in your main report,

in this course you should attach scratch work and derivations to the back of your write-up each week.

In the report itself, you need to:
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1. Make sure that you have explained how the derived quantity is related to the measured quantities

(i.e., give the equation).

2. Carefully explain any systematic errors and how you have dealt with them.

How to Compare Experimental and Predicted/Accepted Values

In most lab experiments, the result you obtain can be directly compared with a theoretical expectation

or a “book value.” In making a comparison, it is essential to take the errors into account. The basic

idea is to subtract the true value from your result, calculate the error on the difference, and observe how

far the result is from zero. You can express this difference in terms of the error using the expression

difference =
|expt− true|

σ

For example, suppose you measure the landing position of a projectile. You expect it to land at x = 0,

but you find that it actually lands at x = 1.3 m. Deciding whether or not this is a reasonable result

depends on the uncertainty of the measurement. Roughly speaking,

• If the difference between expectations and measurments is within 1σ of zero, e.g., 1.3±1.4 m, the

results are in good agreement. For Gaussian data, 68% (or two-thirds) of the random fluctuations

about the true value should occur in this region.

• If the difference is between 1σ and 2σ, e.g., 1.3±0.8 m, the results are consistent. There is about

one chance in three (∼ 100%− 68%) that the discrepancy is due to a random fluctuation.

• If the difference is between 2σ and 3σ, e.g., 1.3 ± 0.5 m, there is about one chance in 20 that

this is a random fluctuation away from the true value. A fluctuation this large probably (but not

definitely) indicates a statistically significant fluctuation.

• If the difference is bigger than 3σ, e.g., 1.3 ± 0.3 m, then your discrepancy is almost certainly

statistically significant. The chance probability of a random fluctuation this big is about 1%.

If you find that the difference between your result and the accepted value is statistically significant, do

not ignore it. For example, it is not acceptable to say, “The difference between my result of 1094.2±0.3

and the accepted value of 1095.5 is 1.3 ± 0.3, but this is less than 0.1%, so my value is very close.”

Remember, for a result to be truly accurate, your answer must agree with the accepted value within the

precision of your measurements. In this particular case, the experimental result is 4.3σ away from the

expected value, a large discrepancy. Either the error estimate is significantly off, or there is a systemic

effect at work, or you have discovered some new physics!

Note that it is not acceptable to simply say, “The discrepancy is due to inaccurate measurements.”

The inaccuracy of your measurements is already known from your error estimate; your job is to determine

its source. Acceptable explanations for a statistically significant discrepancy might include:
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• Different conditions. For example, the book value is quoted at 0◦ C, but you worked at room

temperature.

• Dubious approximations. For instance, a theoretical prediction assumes a small angle approxima-

tion, but you carried out your measurements at 10◦ (0.175 rad).

• Possible systematic effects, such as a device that you could not calibrate accurately. NOTE: it is

not sufficient for you to just say, “Our instrument was not calibrated.” You need to estimate how

large the miscalibration would have to be to cause the observed discrepancy. In this way, you can

determine if a suggested systematic error is reasonable.

Finally, when quoting values from a text, always specify the source. Do not write in your report,

“The book value of Planck’s constant is...” Instead, you should include the source in the report,

either as a footnote, as a cited reference at the end, or as an inline reference: “Planck’s constant is

(6.62606876± 0.00000052)× 10−34 J s (source: PDG, Phys. Rev. D66 (2002) 010001).”
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