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Department of Physics

QUALIFYING EXAMINATION

Monday, January 8, 2018
10:00AM to 12:00PM

Classical Physics
Section 1. Classical Mechanics

Two hours are permitted for the completion of this section of the examination. Choose
4 problems out of the 5 included in this section. (You will not earn extra credit by doing an
additional problem). Apportion your time carefully.

Use separate answer booklet(s) for each question. Clearly mark on the answer booklet(s)
which question you are answering (e.g., Section 1 (Classical Mechanics), Question 2, etc.).

Do NOT write your name on your answer booklets. Instead, clearly indicate your Exam
Letter Code.

You may refer to the single handwritten note sheet on 81
2
” × 11” paper (double-sided) you

have prepared on Classical Physics. The note sheet cannot leave the exam room once the
exam has begun. This note sheet must be handed in at the end of today’s exam. Please
include your Exam Letter Code on your note sheet. No other extraneous papers or books
are permitted.

Simple calculators are permitted. However, the use of calculators for storing and/or recov-
ering formulae or constants is NOT permitted.

Questions should be directed to the proctor.

Good Luck!
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1. A block of mass M slides along a frictionless surface. The block is connected to the
wall with a spring of spring constant k. A cylinder of mass m, radius R, and rotational
inertia 1

2
mR2 rolls without slipping on the block.

(a) What is the frequency for small oscillations of the system around the starting po-
sition?

(b) Describe the motion associated with this oscillation.

(c) What is the maximum oscillation amplitude that the block can have before the
cylinder starts slipping if the friction coefficient is µ?
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2. A particle of mass m moves in a potential energy

U = −k
r
− α

2r2

where k > 0. The particle has angular momentum `.

(a) For what values of α are circular orbits possible? For what values of α are these
stable?

(b) Consider an orbit that is almost circular, with r varying between two values rmin

and rmax. Let T be the time interval required for r to move from rmin to rmax. For
which values of α is T greater than the period of revolution about the origin (i.e.,
the time required for φ to range from 0 to 2π)? For which values of α is T less than
the period of revolution about the origin?
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3. A particle of mass m moves in the potential

V = λ0xy +
1

4
λ1(x

4 + y4)

with λ0 and λ1 positive.

(a) When are the stable equilibria for the particle?

(b) Give the Lagrangian appropriate for small oscillations about one of the equilibrium
positions.

(c) Give the normal frequencies and modes of vibration corresponding to the equilib-
rium position in (b).
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4. A circular platform with radius R and moment of inertia IP rotates in the horizontal
plane on a frictionless bearing. A bead of mass m and negligible size is free to slide
without friction on a wire of length 2R along a diameter of the platform.

(a) At t = 0, the bead is released at rest from r0 ≡ r(t = 0) = 0.10R. An external
mechanism maintains the platforms angular velocity at a fixed value ω0 = 6.0s−1.
Find the time in seconds for the bead to reach the edge of the platform. It is useful
to recall that e3 ≈ 20.

(b) Now assume that at the moment the bead is released the external mechanism is
switched off. Find an algebraic expression for the radial velocity of the bead at
r = R, again assuming it is released at rest from r0.
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5. Consider a particle of charge e and mass m moving under the action of an isotropic
harmonic oscillator of potential U = 1

2
K(x2 + y2 + z2), with K a positive constant.

The particle is in a magnetic field aligned along the z-axis ~B = Bẑ. Assume that the

magnetic field is weak, so that eB
2m
�

√
K
m

.

(a) With the above approximation, find the eigenmodes or normal modes for the motion
of the particle and show your solutions correspond to circular motion. What is the
angular frequency in your solutions?

(b) Show explicitly from your solutions that when B 6= 0 the particle’s motion will
generally exhibit precession. What is the precessional frequency?
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1. An otherwise free non-relativistic charged particle having mass m and charge e moves in a
uniform magnetic field ~B pointing in the ẑ direction.

(a) Assume that at t = 0 the particle is located at the origin and moving with velocity ~v0 in
the x-direction: ~v0 = v0 x̂. Determine the particle’s subsequent position ~r(t) and velocity
~v(t) as a function of time and describe the resulting motion (ignoring radiation damping).

(b) If the initial velocity ~v0 has both an x- and a z-component, ~v0 = v0x x̂ + v0zẑ find the
subsequent postion ~r(t) and describe the resulting motion.
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2. A crystal is composed of a collection of identical atoms. The atoms are modeled as point
particles with charge q and mass m coupled with spring constant k to fixed atomic sites of
opposite charge −q. The number density of atoms in this crystal is N. Damping effects are ac-
counted for by the damping constant Γ. A plane polarized electromagnetic wave of frequency
ω propagates in the solid. Use the following notation: ω2

0 = k/m.

(a) Derive an expression for the complex dielectric function ε(ω).

(b) Sketch the real and imaginary parts of ε(ω).
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3. You have a very long ideal solenoid with radius R, N turns per unit length, and current I.
Coaxial with the solenoid are two long cylindrical shells of length l. One is inside the solenoid
at radius a < R and carries a charge +Q uniformly distributed over its surface. The other
is outside the solenoid at radius b > R and carries charge −Q uniformly distributed over its
surface. Note that l >> R and ignore fringe fields.

(a) What is the angular momentum of this system?

(b) As the current in the solenoid is gradually reduced to zero, the cylinders begin to rotate.
Calculate the final angular momentum of each and show that their sum is equal to the
initial angular momentum of the system.
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4. Consider in electrostatics an infinitely extended uniform charge density, ρ(~x) = ρ0.

(a) Prove that, despite ρ(~x) being invariant under translations and rotations, there is no unique
solution to the Poisson equation that is preferred in terms of symmetries.

(b) Suppose now that the charge distribution is smoothly cut off in a spherical fashion at very
large distances, i.e.

ρ(~x) = ρ0 f (|~x|/R) ,

where f = 1 for |~x|/R � 1, and f = 0 for |~x|/R � 1. Argue that this removes the
ambiguity in the Poisson problem. Compute the potential for |~x|/R � 1 and for |~x|/R � 1
(up to additive constants).

Section 2 Page 5 of 6



5. A linearly polarized electromagnetic wave of amplitude ~E0 and frequency ω is incident on a
classical particle of mass m and charge q attached to a spring of spring constant k, as shown in
the figure below. Assume that the particle is free to move in three dimensional space, i.e. it is
mechanically an isotropic 3-D classical harmonic oscillator.

(a) Calculate the differential cross section dσ/dΩ for the light to scatter into a solid angle
dΩ. Express your results in terms of the angle θ with respect to the polarization direction.

(b) Calculate the total cross section.

(c) Consider the above system as a semi-classical model for a valence electron of a nitrogen
atom in the Earth’s atmosphere, where the “spring” represents the restoring force holding
the electron at its equilibrium position in the atom.
Using your result from part 2, explain why the sunset is red. Make sure to justify any
approximations made.
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1. Let |0〉 be the ground state of the harmonic oscillator with angular frequency ω, with
Hamiltonian H = 1

2m
p̂2 + 1

2
mω2x̂2. The ground state wave function in position repre-

sentation is ψ0(x) = 〈x|0〉 = Ae−x
2/2`2 with ` =

√
h̄
mω

and A = `−
1
2π−

1
4

(a) Express the operator x̂ in the momentum representation and verify the canonical
commutation relation.

(b) Using the above, express the creation and annihilation operators â and â† in the
momentum representation, and verify that the canonical commutation relation be-
tween them holds.

(c) Using (b), calculate the ground state wave function ψ0(p) = 〈p|0〉 in the momentum
representation.

(d) Check your answer by direction calculation starting from the position space repre-
sentation ψ0(x).
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2. For the infinite square well with walls located at x = a and x = −a, the ground state
energy is E1 = π2h̄2/8ma2 and the ground state wavefunction is ψ1(x) = 1√

a
cos(πx/2a).

The position momentum uncertainty relationship for this state is ∆x∆p = κh̄/2. Find
κ.

(A potentially useful formula is
∫
dx x2 cos2(bx) = x3

6
+
(
x2

4b
− 1

8b3

)
sin(2bx) + x cos(2bx)

4b2
.)

Section 3 Page 3 of 6



3. Consider the two potential energy functions:

V1(x) =
mω2

2
x2, x > 0

= ∞, x ≤ 0

V2(x) =
mω2

2
x2, −∞ ≤ x ≤ ∞

A particle with mass m, subject to the potential V1, is initially in its quantum ground
state.

(a) Write the normalized wave function, φ(x), of this state. (Hint: This wave function
can be determined easily from simple harmonic oscillator solutions you already
know.)

(b) At a certain time (say, t = 0), the impenetrable barrier at x = 0 is very suddenly
removed so that for all t > 0 the same system is subject to the potential V2 instead
of V1. If the energy is then measured, what is the probability of finding the system
in its new ground state, ψ0(x)?
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4. In this problem we consider a one-dimensional quantum harmonic oscillator with fre-
quency ω and mass m. The Hamiltonian of the system is

Ĥ = h̄ω(n̂+ 1/2).

The orthonormal eigenstates of the Hamiltonian are denoted by |n〉 and have the property
that n̂|n〉 = n|n〉 where n̂ = â†â.

The eigenstates of the operator â are called quasi-classical states for reasons that we
examine in this problem. Consider an arbitrary complex number α.

(a) Show that the state

|α〉 = e−|α|
2/2
∑
n

αn√
n!
|n〉

is an eigenstate of â with eigenvalue α, that is â|α〉 = α|α〉. Also show that it is
properly normalized.

(b) Calculate the expectation value of energy 〈Ĥ〉 = 〈α|Ĥ|α〉 for a quasi-classical state
|α〉.

(c) Also calculate the expectation values of position 〈x̂〉 and momentum 〈p̂〉. Recall
that

x̂ =

√
h̄

2mω
(â+ â†) and p̂ = −i

√
mh̄ω

2
(â− â†).

(d) Calculate the root mean square deviations ∆x and ∆p for the position and the
momentum in this state. Show that ∆x∆p = h̄/2.

(e) Now, suppose that at time t = 0 the oscillator is in a quasi-classical state |α〉 with
α = |α|eiφ, where |α| is a real positive number. Show that at any later time t
the oscillator is also in a quasi-classical state that can be written as e−iωt/2|α(t)〉.
Determine the value of α(t) in terms of |α|, φ, ω, and t.

(f) Evaluate 〈x̂〉(t) and 〈p̂〉(t). Justify briefly why these states are called quasi-classical.
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5. Consider a particle in one dimension subject to the double-delta-function potential en-
ergy

V (x) = −g δ(x− a)− g δ(x+ a)

where g is a positive constant.

(a) Find an equation from which the energy of the lowest bound state can be deter-
mined.

(b) Using this equation, find approximate expressions for the ground state energy in
the limits where a is very large and where a approaches zero.
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1. Solve both parts of this problem.

(a) A π− particle stops in Deuterium and is captured from the atomic ground state creating a
pair of outgoing neutrons. Examine the possible combinations of spin and orbital angular
momentum of the pair of neutrons and explain why the existence of this process implies
that the parity of the π− must be negative. (Recall that the Deuteron has spin one.)

(b) A π− with total energy Eπ strikes a hydrogen target producing a Λ0 and a K0:

π− + P→ Λ0 + K0.

What is the minimum energy Eπ that will allow this reation to take place? (Recall Mπ− =

140 MeV, Mproton = 938 MeV, MΛ0 = 1116 MeV and MK0 = 498 MeV.)
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2. A train rushes by a platform moving to the right at speed v = 12c/13. Call the midpoint of
the train and the midpoint of the platform the ”origin” of each frame, and note that as the
respective origins pass one another, clocks at those locations both read 4 PM. As the train’s
conductor, who is sitting in the engine room (at the front of the train), passes an observer on
the platform, there’s an explosion in the conductor’s control console.The platform observer
notes that when the explosion happens, a clock in the control room reads 2 PM.

(a) According to those on the train, what is the reading on the clock at the origin of platform
when the explosion takes place?

(b) According to those on the train, how far is the origin of the platform from the origin of
the train frame when the explosioni takes place?

(c) The condcutor immediately sends a distress signal (traveling at light speed) alerting his
colleagues of the explosion. At what time does his colleague at the origin of the train
receive the message?

(d) When the observer at the origin of the train receives the signal, how far away will he/she
claim he/she is from the origin of the platform?
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3. The velocity v of a particle does not transform particularly nicely under Lorentz transforma-
tions. Consider however the rapidity η, defined as

η =
1
2

log
c + v
c − v

(a) Show that rapidity is additive, in the sense that if a particle is moving along x with rapidity
η in the lab frame, and the lab frame is moving with respect to a second frame with
rapidity η0, also along x, then the rapidity of our particle as seen from the second reference
frame is η + η0.

(b) Now we want to generalize this nice property to more general setups in 3D, e.g. a particle
moving along x in the lab frame, which is itself moving along y with respect to a second
frame. Argue that there is no vector generalization ~η of rapidity that retains the additive
property above. That is, one would like to have that under a Lorentz transformation of
rapidity ~η0, the rapidity ~η of a particle transforms into ~η+~η0. Argue that this is impossible.
[Hint: Recall that Lorentz transformations do not commute, in the sense that when per-
forming two subsequent Lorentz transformation along different axes, the order in which
they are performed matters.]
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4. Two observers move in opposite directions in a circle of radius R with constant angular veloc-
ities ω1 and ω2. When they first meet, they synchronize their clocks. When they meet again,
whose clock will be delayed and by how much?
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5. A hydrogenic ion consists of a single electron bound to a nucleus with charge Ze, where e is
the elementary charge. For a hydrogenic ion, find the scaling with Z of

(a) the expectation value of r (the electron-nucleus separation)

(b) the expectation value of E (the total energy of the electron)

(c) |Ψ(r = 0)|2 (the probability of finding the electron at the nucleus)

(d) the fine-structure energy splitting
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1. Consider a star of mass M and radius R. Assume that the star has a uniform density
and is composed of Hydrogen gas which is 100% ionized and well virialized. Assume the
gas obeys the ideal gas law. The star radiates energy and therefore gradually contracts.

(a) Estimate the star temperature in terms of mass M and radius R. Is the tempera-
ture increasing or decreasing with contracting radius R? How do you explain this
behavior?

(b) What is the electron de Broglie wavelength of the star’s gas in terms of temperature?

(c) Define the critical density of the star ρ0 as the density at which quantum effects
change the pressure. Express ρ0 in terms of the electron de Broglie wavelength.
Will the star continue to contract to ρ > ρ0?

(d) Using the above results, find an expression for the maximum temperature a star
can reach as a function of its mass. Estimate this temperature for a star of mass
M = 2× 1033 g (mass of the sun).

For your numerical estimates you may find useful:

Gravitational constant G = 6.67× 10−8 cm3 g−1 s−2

Planck constant h̄ = 1.05× 10−27 erg s
Electron mass me = 0.91× 10−27 g
Proton mass mp = 1.67× 10−24 g
Classical electron radius re = e2/mec

2 = 2.82× 10−13 cm
Proton radius rp ∼ 0.9 fm= 0.9× 10−13 cm
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2. A system with two nondegenerate energy levels, E0 and E1 (E1 > E0 > 0) is populated
by N distinguishable particles at temperature T .

(a) What is the average energy per particle? Express answer in terms of E0, E1 and
∆E = E1 − E0.

(b) What is the average energy per particle as T → 0? Express answer in terms of E1

and ∆E.

(c) What is the average energy per particle as T → ∞? Express answer in terms of
E0 + E1 and ∆E.

(d) What is the specific heat at constant volume, cV , of this system? Express answer
in terms of ∆E.

(e) Compute cV in the limits T → 0 and T → ∞ and make a sketch of cV versus
∆E/kT .
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3. This is a problem on the one-dimensional Ising model. Consider a system with N + 1
spins with the Hamiltonian:

H = −J
N−1∑
i=0

si+1si (1)

where each si can take on only two possible values: +1 or −1. Let us define G ≡ βJ ,
where β is the usual inverse temperature. Thus, the partition function Z takes the form

Z =
∑
{s}

exp

[
G

N−1∑
i=0

si+1si

]
(2)

where the symbol {s} denotes all possible combinations of the values of the spins.

(a) Compute Z. You should be able to express it as an analytic function of G (and N).
Hint: it is useful to define a variable ti ≡ si+1si which also takes the values +1 or
−1. You might also want to assume first that s0 is fixed and consider a sum over
all possible combinations of t0, t1, ..., tN−1; then sum over s0 = ±1.

(b) What is the free energy F? What is its low temperature (β →∞) limit? Be careful
to distinguish between the J > 0 (ferromagnetic) and J < 0 (anti-ferromagnetic)
possibilities.
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4. In a system of electrons confined to a two-dimensional plane, the energy of the states of
electrons is represented as:

E[j, px, py] =
1

2me

(p2x + p2y) + jEz, Ez = 0.01 eV ,

where jEz, j = 0, 1, 2, . . ., represents the quantized energy of electron oscillations along
the z-direction normal to the (x, y)-plane, and (px, py) are the components of electron
momentum in the (x, y)-plane. The (x, y)-plane has a (large) surface area A.

(a) Evaluate the density of states for each value of the quantum number j.

(b) Assume that the electron density is n = 1012 cm−2. Find the chemical potential at
temperature T = 0 K. Describe qualitatively what happens when the temperature
is raised to T ∼ 100 K.

Some numerical values:

1 eV = 1.6× 10−12 erg = 1.6× 10−19 Joule, and equivalent to about 10000 K
me = 9.1× 10−28 g
e = 4.8× 10−10 esu=1.6× 10−19 C
h̄ = 1.05× 10−27 erg s = 1.05× 10−34 Joule · s
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5. Earth’s atmosphere is composed of a wide range of gases including water vapor. Estimate
the ratio of the number of water molecules to the total number of gas particles (atoms
and molecules) in a cubic meter of air in typical ambient conditions using the following
information:

• Typical ambient temperature TA = 293 K and relative humidity ρ = 50%.

• Saturation vapor pressure of water approximately doubles with every 10 K rise in
temperature.

• Boiling temperature TB of water at typical ambient pressure is 373 K.
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6. Consider a system of N independent identical harmonic oscillators whose energy is given
by

E =
N∑
i=1

(
mi + 1

2

)
h̄ω,

where mi = 0, 1, 2, . . . are the oscillator excitation quantum numbers. The harmonic
oscillators describe the motion of atoms in a solid. This model was introduced by
Einstein in 1905 to understand thermodynamic properties (e.g. the heat capacity) of
solids.

(a) Determine the number of ways, Ω(E), that this energy can be obtained. Hint: Ω(E)
can be understood as the number of ways of putting M ≡

∑N
i=1mi indistinguishable

balls in N labeled boxes.

(b) Find the entropy S in terms of N and M , assuming N and M are both large.

(c) Using the relation between entropy S, energy E, and temperature T , find T in
terms of N and M .

(d) Express E in terms of N and T . Which form does E take in the limiting cases
kBT � h̄ω and kBT � h̄ω?
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1. Suppose you are doing a spectroscopy experiment on a cloud of 84Kr atoms at room tempera-
ture and negligible pressure. You want to tune a laser to probe a transition at 811.51 nm (with
respect to an atom at rest) by passing the laser through the gas in one direction. To make your
measurements, you would like to use an old interferometer you found hidden in the bottom
of a drawer in your lab. It has a resolving power of 107. You may use the following infor-
mation: the RMS velocity of 84Kr atoms at room temperature is 300 ms−1 and the collision
cross-section for 84Kr atoms is ≈ 10−15 cm2.

(a) Estimate the dominant relative uncertainty on the measurement of the line. Suppose you
could first cool the cloud to 1 K. Estimate the expected improvement in your results, if
any.

(b) Suppose that for the measurement above, the atoms are first put into a long-lived excited
state (i.e. metastable state). The atoms must stay in this state as they freely expand from
the excitation chamber to the detection chamber, 50 cm away. If the atoms collide with
each other, however, they are likely to de-excite (a process called collisional quenching).
Assume that collisions with the walls are negligible. Estimate the maximum pressure of
gas that can be safely used in the region between chambers, both for a gas at 300 K and a
gas at 1 K.

(c) Once the atoms enter the detection chamber, they must each be probed for 0.5 s. What is
the maximum pressure that can safely be maintained in this chamber, again for a gas at
300 K and at 1 K?
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2.

(a) Using classical electricity and magnetism arguments (i.e. Coulombs potential), make an
order of magnitude comparison of chemical energy to nuclear fission energy.

(b) Write a primary reaction for uranium fission. State two key features necessary for the
production of nuclear energy.

(c) Shortly after detonation the fireball of a uranium fission bomb consists of a sphere of gas
of radius 15 meters and temperature of 100 million K. Assuming that the expansion is
adiabatic and that the fireball remains spherical, estimate the radius of the ball when the
temperature is 3000 K.

(d) Thermonuclear weapons can be three orders of magnitude more powerful than fission
bombs. What is the primary explanation for this enormous increase in energy?

Section 6 Page 3 of 7



3. The peaks of tall mountains are generally much colder than their bases. How much colder?

Assume our lower atmosphere, heated from below by contact with the warmer earth surface, is
slightly convective, because it is made slightly buoyant by that contact. Adiabatic convection
results in a variation of temperature, T and pressure, P with altitude, h. Evaluate either T (h)
or P(h) in terms of T (0) or P(0) using the following:

The equation of state of air is PV = RT , where R is Boltzmann constant multiplied by the Avo-
gadro number NA. Air heat capacity cV (per NA molecules) is from rigid diatomic molecules
of average mass m̄ with classically calculated translational and rotational energies (but no
excitable vibrational or electronic ones).
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4. Neutron stars form when a solar mass is compressed to a radius R ∼ 10 km. Estimate the
maximum spin rate of a neutron star. Express your answer in revolutions per second. Recall
that the radius of Earths orbit around the sun is rE ≈ 1.5 × 108 km.
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5. Typical dust particles in the Solar System have mass density ρ. They experience both gravi-
tational and radiation pressure effects of the Sun (mass M = 2 × 1030 kg, emitted light power
P = 4 × 1026 W).

(a) Are the smaller or the larger dust particles more likely to be ejected from the Solar Sys-
tem?

(b) Estimate, symbolically, the critical radius R of a particle that would not be ejected from
the Solar System.

(c) Provide a numerical estimate to part (b).
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6. The MicroBooNE Liquid Argon Time Projection Chamber (LAr TPC) detector is a large rect-
angular volume with dimensions shown in the figure. It is nominally filled with liquid argon.
Ionization electrons, liberated by a charged particle propagating through the liquid argon along
the particle’s path, drift under an applied uniform electric field toward a plane of anode wires
that lie in the shaded plane in the figure. The wires are strung vertically from the top to the bot-
tom of the TPC, and spaced 3 mm apart along the length (L) of the TPC. Answer the following
questions:

(a) During the filling of the TPC, the liquid level h changed with a constant rate dh/dt.
The potential difference across the TPC was held fixed at V0. The resulting change in
effective capacitance in the TPC resulted in increasing noise levels on the TPC anode
wires as a function of increasing liquid level. Calculate the rate of change of effective
TPC capacitance, dC/dt.

(b) A minimum ionizing particle (MIP) traverses the length of the TPC (see figure) near the
bottom when the detector is half full. The particle loses energy due to ionization in the
argon at a rate of 2 MeV/cm. The ionization energy of argon is 23.6 eV. You may assume
that half of the ionization charge liberated is lost during the drift. The noise level on a
single TPC wire for an empty detector, measured in Equivalent Noise Charge (ENC), is
400 electrons; when the detector is full, the ENC is 450 electrons. Calculate the signal-
to-noise ratio, on a single TPC wire, under these conditions.

MIP 
h 

H 

L 

W 

εr 

ε0 

LAr 

V=0 V=V0 
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