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Department of Physics

QUALIFYING EXAMINATION

Monday, January 11, 2016
1:00PM to 3:00PM
Classical Physics

Section 1. Classical Mechanics

Two hours are permitted for the completion of this section of the examination. Choose
4 problems out of the 5 included in this section. (You will not earn extra credit by doing an
additional problem). Apportion your time carefully.

Use separate answer booklet(s) for each question. Clearly mark on the answer booklet(s)
which question you are answering (e.g., Section 1 (Classical Mechanics), Question 2, etc.).

Do NOT write your name on your answer booklets. Instead, clearly indicate your Exam
Letter Code.

You may refer to the single handwritten note sheet on 81
2
” × 11” paper (double-sided) you

have prepared on Classical Physics. The note sheet cannot leave the exam room once the
exam has begun. This note sheet must be handed in at the end of today’s exam. Please
include your Exam Letter Code on your note sheet. No other extraneous papers or books
are permitted.

Simple calculators are permitted. However, the use of calculators for storing and/or recov-
ering formulae or constants is NOT permitted.

Questions should be directed to the proctor.

Good Luck!

Section 1 Page 1 of 6



1. Two balls, each of mass m = 2.00 kg and negligible radius are attached to a thin rod
of length L = 50.0 cm of negligible mass. The rod is free to rotate in a vertical plane
without friction about a horizontal axis through its center in the gravitational field at
the surface of the Earth (assumed to be uniform). With the rod initially stationary and
horizontal (see Figure), a wad of wet putty of mass M = 50.0 g drops onto one of the
balls, hitting it with a speed v0 = 3.00 m/s and then sticking to it.

(a) What is the angular speed of the system just after the putty wad hits?

(b) What is the ratio of the kinetic energy of the system after the collision to that of
the putty wad just before?

(c) Through what angle will the system rotate before it momentarily stops?
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2. Consider the general problem of N beads of mass m that slide frictionlessly around a
circular hoop. Adjacent pairs of beads are connected by springs with identical spring
constants and equilibrium lengths. This system of springs and beads forms a closed
circle around the hoop. For any given N , the spring constant is chosen such that in
equilibrium, the springs are under tension T . Answer the following questions:

(a) Suppose N = 2. For t < 0 bead #1 is held fixed at a reference position, θ1 = 0,
and bead #2 is held fixed at θ2 = π + ∆ where ∆ � π. At t = 0 the beads are
released. Find the subsequent motion of the two beads, i.e. θ1(t) and θ2(t).

(b) Suppose N = 3. Find the normal modes of the system and their corresponding
frequencies. The figure below shows this three-bead configuration.
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3. A mass m can slide without friction in two dimensions on a horizontal surface. It is
attached by a massless rope of length L to a second mass M through a hole in the
surface. The mass M hangs vertically in a uniform vertical gravitational field g.

(a) If the mass m moves in a circle of radius r0 centered on the hole with constant
angular velocity ω0, what is value of ω0?

(b) Show that this motion is stable against small perturbations.

(c) Find the frequency of small oscillations about this circular motion.
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4. As shown in the figure, a uniform thin rod of weight W and length L is supported
horizontally by two supports, one at each end of the rod. At t = 0, one of the supports is
removed. Find the force on the remaining support in terms of W immediately thereafter
(at t = 0). At this instant, what is the angular acceleration around the remaining
support in terms of L and g?
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5. A block of mass m = 200 g is attached to a horizontal spring with spring constant
k = 0.85 N/m. The other end of the spring is fixed. When in motion, the system is
damped by a force proportional to the velocity, with proportionality constant −b = −0.2
kg/s.

(a) Write the differential equation of motion for the system.

(b) Show that the system is underdamped. Calculate the oscillation period and compare
it to the natural period.

(c) How long does it take for the oscillating block to lose 99.9% of its total mechan-
ical energy? How many cycles does this correspond to? By what factor does the
amplitude decrease during this time?

The system is now subject to a harmonic external force, F (t) = F0 cos(ωet), with a
fixed amplitude F0 = 1.96 N.

(d) Calculate the driving frequency ωe,max at which amplitude resonance (i.e. when the
amplitude is maximized) occurs, and find the steady-state maximum amplitude to
which this corresponds.
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Good Luck!
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1. A current I flows down a long straight wire of radius a. Assume the wire is made of linear
material with magnetic susceptibility χm, and the current is distributed uniformly across the
cross section of the wire.

(a) Calculate the magnetic field a distance s from the axis. Consider separately the regions
both inside the wire (s < a) and outside (s > a).

(b) Calculate all of the bound currents in the problem. What is the net bound current flowing
down the wire?
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2. An infinitely long 2-D slot has a width a. The walls are conductors held at fixed potentials
φ = 0 and φ = V , as shown.

(a) Determine the electric potential at an arbitrary location (x, y) inside the slot.

(b) A positron is released from rest at the coordinates (x,y) = (a, a/2). Find an expression for
the force on the positron. Where will it be located at time t → ∞?
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3. A thin, circular conducting ring of radius a lies fixed in the x − y plane centered on the z axis.
It is driven by a power supply such that it carries a constant current I. Another thin conducting
ring of radius b, with b << a, and resistance R is centered on and is normal to the z axis.
This second ring is moved along the z axis at constant velocity v such that it’s center is located
at z = vt. Estimate, using what ever approximations you consider appropriate, the following
quantities including the full time dependence.

(a) The current in the moving ring.

(b) The force required to keep the ring moving at constant velocity.
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4. A long cylindrical solenoid of radius R and length L � R is tightly wound with a single layer
of wire (see below). The number of turns per unit length is N/L. The wire breaks when the
tension in the wire is greater than T . Find the maximum current that can be carried by the
wire.
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5. The general expressions for the scalar and vector potentials are

V(~r, t) =
1

4πε0

∫
ρ(~r′, tr)d3r′

|~r − ~r′|
, ~A(~r, t) =

µ0

4π

∫
J(~r′, tr)d3r′

|~r − ~r′|
, (1)

where tr is the retarded time.

A long (effectively infinite) neutral wire on the z-axis has zero current for t < 0. At t = 0 a
steady current I0 is suddenly turned on in the +ẑ direction (see Figure).

(a) Consider a point at a distance s from the wire (z = 0). At what time do the electric and/or
magnetic fields first become non-zero at this point? Hereafter call this time ts (‘s’ for
when the field starts at position s).

(b) What is the value of the scalar potential V at position s at time t > ts?

(c) What is the direction of the vector potential ~A at position s at time t > ts?

(d) What is the direction of the electric field ~E at position s at time t > ts?

(e) What is the direction of the magnetic field ~B at position s at time t > ts?

(f) Write an integral expression for the magnitude of the vector potential A(s, t) at times
t > ts.
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Two hours are permitted for the completion of this section of the examination. Choose
4 problems out of the 5 included in this section. (You will not earn extra credit by doing an
additional problem). Apportion your time carefully.

Use separate answer booklet(s) for each question. Clearly mark on the answer booklet(s)
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1. The ground-state wave function of the hydrogen atom is ψ1s(r) ∼ e−r/a0 , where the Bohr
radius a0 = 5.29× 10−11 m. This solution, and the corresponding ground-state energy

E0 = − e2

2a0
= −13.6 eV ,

is derived assuming that the proton is a point charge. In reality the proton’s charge is
distributed over its radius R, which we take to be 10−15 m.

(a) Assuming that the proton’s charge is uniformly distributed over a solid sphere of
radius R, estimate the fractional shift ∆E/|E0| in the ground-state energy of the
hydrogen atom from the value obtained assuming the proton is a point charge.
[Computing the shift to lowest non-vanishing order in the small parameter R/a0
suffices.]

(b) How would the order of magnitude of your answer change if the electron in the
hydrogen atom were replaced with a negative muon, with mass mµ = 207 me?
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2. Consider a particle in one dimension with a potential energy

V (x) =

{
−U , −c < x < c

0 , otherwise

where U is a positive constant.

(a) Consider the wave function

ψ(x) =


a(b+ x) , −b < x < 0

a(b− x) , 0 < x < b

0 , otherwise

where a and b are constants and b > c. What is the expectation value of the
Hamiltonian in this state?

(b) Use the result from part (a) to show that there will be a bound state for any value
of U .

(c) Use the result from part (b) to show that a one-dimensional potential energy that
is (i) equal to zero at x = ±∞ (ii) nowhere greater than zero, and (iii) less than
zero in some finite interval, always has a bound state.
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3. Consider a particle in one dimension with an inverted (upside-down) harmonic oscillator
potential V (x) = −1

2
mω2x2. Picking units such that m = 1, h̄ = 1, the Schrödinger

equation takes the form:
i∂tψ = −1

2
∂2xψ − 1

2
ω2x2ψ

Due to the minus sign in the potential, this describes an unstable system, with energy
unbounded from below.

(a) Consider a state at time t = 0 given by a Gaussian wave packet of the form

ψ0(x) = α0 e
−β0x2 , β0 ≡

ω

2
tan θ .

Here α0, β0 and θ are real constants, with the parametrization of β0 in terms of θ
introduced for future convenience. Show that the wave function evolves in time as

ψ(x, t) = α(t) e−β(t)x
2

,

and find β(t) explicitly.

(b) Find the late time (t→∞) behavior of β(t) and use this to show that at late times,
the expectation value of x̂2 is 〈x̂2〉 ∝ e2ωt. What is the proportionality constant?
Here x̂ is the position operator.

(c) Show similarly that at late times, the expectation value 〈(p̂−ωx̂)2〉 decays exponen-
tially. What is the exponent? Here p̂ is the momentum operator. This exponential
decay is the signature of a squeezed state.
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4. Assume that a particle is moving in an harmonic oscillator potential, V (x) = 1
2
mω2x2.

At an initial time, say t = 0, we are given that its wave function is

ψ(x, 0) = N
∑
n

(
1√
7

)n
ψn(x) ,

where the ψn(x) are the usual orthonormal energy eigenstates of the harmonic oscillator.

(a) Find the value of the normalization constant N .

(b) Show that the probability of finding the particle at a given position x is a periodic
function of t, and find the period.

(c) Find the expectation value of the energy.
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5. Consider the two-dimensional isotropic harmonic oscillator, picking units such that m =
1, ω = 1 and h̄ = 1, so the Hamiltonian is

H =
1

2
(p2x + p2y) +

1

2
(x2 + y2) .

with [x, px] = i = [y, py]. Interpreting the system as being made up of two independent
one-dimensional oscillators, the energy spectrum can be generated using the standard
one-dimensional creation and annihilation operators

ax =
1√
2

(x+ ipx) , a†x , ay =
1√
2

(y + ipy) , a†y ,

in terms of which H = a†xax + a†yay + 1, and [H, ax] = −ax, [H, a†x] = a†x, etc.

(a) Construct the energy spectrum using these operators, and find the degeneracy of
each energy level.

(b) Consider now the angular momentum operator,

L = xpy − ypx .

Express L in terms of the a, a†, and show that the basis of energy eigenstates
constructed above does not diagonalize the angular momentum operator.

(c) Find a new basis of creation and annihilation operators, obtained as linear combi-
nations of the one-dimensional operators defined above, which generate a basis of
energy eigenstates that does diagonalize the angular momentum operator. (Hint:
You might make use of an analogy with the relation between linear and circular po-
larization.) What are the possible values of the angular momentum in each energy
level?
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Two hours are permitted for the completion of this section of the examination. Choose 4 problems
out of the 5 included in this section. (You will not earn extra credit by doing an additional problem).
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Use separate answer booklet(s) for each question. Clearly mark on the answer booklet(s) which
question you are answering (e.g., Section 4 (Relativity and Applied QM), Question 2, etc.).

Do NOT write your name on your answer booklets. Instead, clearly indicate your Exam Letter
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prepared on Modern Physics. The note sheet cannot leave the exam room once the exam has begun.
This note sheet must be handed in at the end of today’s exam. Please include your Exam Letter
Code on your note sheet. No other extraneous papers or books are permitted.

Simple calculators are permitted. However, the use of calculators for storing and/or recovering
formulae or constants is NOT permitted.

Questions should be directed to the proctor.

Good Luck!
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1. Consider the first relativistic correction, H1, in the Hamiltonian for the one dimensional har-
monic oscillator.

H = H0 + H1 =
p2

2m
+

1
2

mω2x2 −
1

2mc2

(
p2

2m

)2

(1)

Evalulate the first order shift in the ground state energy due to H1.
Recall that the ground state wave function is given by

U0(x) =

(mω
π~

)1/4
exp

[
−

mωx2

2~

]
(2)
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2. An asteroid is on a collision course with a space station located 5000 light-minutes from Earth.
The asteroid is moving away from the Earth toward the space station at a speed of 3/5c along
a trajectory which is a straight line connecting Earth and the space station. To save the station,
NASA launches a missle from Earth at 4/5c. When the missile is launched, NASA determines
that the asteroid is 400 light-minutes from Earth.

(a) How many minutes should NASA set on a timer located on the missle so that it will
explode just as it catches up to the asteroid? (In all parts of this problem, ignore subtleties
having to do with acceleration.)

(b) A few weeks later, another asteroid is on a similar collision course with the space station,
travelling again at 3/5c. NASA decides to send another missile to destroy it, but this time
they want the missile to pass the asteroid and explode only when according to sensors on
the missile, the missile is 350 light minutes beyond the asteroid. In this scenario, how
many minutes should NASA set on the missile’s timer?

(c) From the perspective of the missile’s frame of reference, how far away is the asteroid
when the missile is launched?
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3. A thin plate with surface rest-mass density Σ0 [g/cm2] is surrounded by uniform dust at rest
with mass density ρ [g/cm3]. At time t = 0 the plate is set in motion along its normal with
initial Lorentz factor γ(0) = γ0. The moving plate collides inelastically with the dust particles
(which stick to its surface) and gradually decelerates.

Find the evolution of its Lorentz factor γ(t). If γ0 � 1, at what time γ(t) = γ0/2?
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4. A one-dimensional non-relativistic particle interacts with the potential

V(x) = λ
~2

2m
δ(x), (3)

where λ is a constant and the prefactor is factored out to simplify the algebra.

(a) Calculate the reflection and transmission coefficients (probabilities) as a function of the
incident particle wavenumber k.

(b) Calculate the scattering and bound states for λ < 0. Show that there is a single bound
state, and that it is orthogonal to the scattering states.
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5. Consider a hydrogen atom. The spin-orbit interaction at radius r is written as:

Hso =
e2

2m2c2r3
~S · ~L, (4)

where ~S is the spin of the electron and ~L.

(a) Describe in words the origin of the spin-orbit interaction.

(b) Construct the basis of wave functions that diagonalize Hso.

(c) Obtain the spin-orbit interaction energies for hydrogen in the state with radial quantum
number n=2. You may express your answer in terms of the expectation values 〈1/r3〉 of
the hydrogen atom states (you do not need to calculate these expectation values explic-
itly).
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1. Suppose the earth’s lower atmosphere is approximated as a classical ideal gas with mean
molecular weight M in a uniform gravitational field which produces an acceleration g.

(a) Assume a small volume of air is in hydrostatic equilibrium with its surrounding atmo-
sphere at temperature T and pressure P. Find an expression for the pressure gradient
dP/dz around it in terms of P, T , g and M. (z is the altitude above the earth surface.)

Our lower atmosphere is very slightly convective. Large blobs of it have zero buoyancy.
They move up or move down while adjusting their density to be the same as that of the
surrounding air without significant exchange of heat with it. Assume air is composed of
diatomic molecules, each of which can be modeled classically as two point masses at the
ends of a rigid, massless stick.

(b) Find an expression for the temperature T at any point in the lower atmosphere in terms
of the pressure P at the same point and T0 and P0, the temperature and pressure at the
surface of the earth respectively, ie., find T (P,T0, P0).

(c) Combine your answers from parts (a) and (b) to determine the temperature and pressure
as a function of height z above the earth’s surface, ie., find T (z,T0) and P(z, P0,T0).
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2. A laser beam is incident from the left (pointed in the +x̂ direction) upon a rectangular aperture
with length a in the y-direction and length b in the z-direction, where b > a (see Figure). The
laser is monochromatic with a wavelength λ and its intensity is uniform across the opening.
Light passing through the aperture is collected on a screen at a very large distance x(� a, b, λ)
away from both the aperture and the laser. Coordinates on the distant screen are denoted by
their physical coordinates (Y,Z), or by the angles (θY ≈ Y/x, θZ ≈ Z/x) measured with respect
to the x̂ axis.

(a) The intensity pattern I(θY , θZ) as measured on the distant screen is shown in the Figure on
the right. Which directions in this figure correspond to the Y axis, and which correspond
to the Z axis? (example answer: the vertical direction corresponds to the Y axis) Explain
your reasoning.

(b) How does the angular distribution of intensity I(θY , θZ) change if the screen is moved a
factor of 2 further away from the aperture? Explain your answer.

(c) How would the measured intensity distribution I(θY , θZ) change if the wavelength of the
laser light λ is doubled? Briefly explain your answer.

(d) Calculate the intensity distribution I(θY , θZ) in terms of the angles θY , θZ and normalized
to the intensity I(0) at the center of the screen. Hint: Do not worry about the constant
amplitude in front of the electric field or intensity until the end of the derivation.
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3. A point dipole source of monochromatic light (wavelength λ) is suspended a height x above a
perfectly reflecting mirror. Emitted light directed down towards the mirror below has the same
amplitude and polarization as light emitted upwards in the opposite direction. A planar, fully-
absorbing light detector, oriented exactly parallel to the mirror is placed a height 2b above the
mirror. The detected light intensity depends on the source position x and on r, the distance
from an axis through the source and normal to the mirror and detector, as shown in the figure.
Assume the light emitter is small enough that it intercepts none of the reflected light. Assume
in what follows that λ � b and r � 2b − x. There are many local maxima at r = 0 as x is
varied, and at any fixed x as r is varied.

mirror 100% reflecting

light detector 100% absorbing

light source *

x

2b

~r

(a) At what values of x are intensity maxima observed on the light detector at r = 0?

(b) The source is placed at x = b and the wavelength λ is such that an intensity maximum is
observed on the light detector at r = 0. At what other values of r will intensity maxima
be observed on the light detector?

(c) How is the answer to part (a) changed if the mirror moves with velocity v parallel to the
detector plane? How is the answer to part (b) changed?
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4. One mole of a diatomic ideal gas is driven around the cycle ABCA shown on the pV diagram
below. Step AB is isothermic, with a temperature TA = 500 K; step BC is isobaric; and step
CA is isochoric. The volume of the gas at point A is VA = 1.00 L, and at point B is VB = 4.00 L.
Treat a diatomic gas molecule as two point masses at the ends of a rigid, massless rod.

The ideal gas constant is R = 8.31 J/mol · K.

V

p

C
B

A

(a) What is the pressure pB at point B?

(b) What is the total work done in completing one cycle (ABCA)?

(c) What is the entropy change S c − S B?
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5. A rope of uniform linear density µ and total length L is suspended from one end and hangs
vertically under its own weight. It is lightly tapped at the lower end.

How long does it take for the perturbation to reach the top of the rope?
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6. For a non-relativistic ideal gas the partition function for N particles (of mass m) in a volume
V is

ZN =
ZN

1

N!
(1)

where

Z1 =

∫
d3kd3 p

h3 exp[−
~p2

2mkT
] =

V
λ3 (2)

with
λ =

h
√

2πmkT
(3)

Now consider an extreme-relativistic ideal gas of N particles in a volume V . Give the follow-
ing:

(a) The partition function ZN at a temperature T

(b) E(N,T ) the energy of the gas

(c) P the pressure of the gas

If m is the mass of the particle when do you expect the extreme-relativistic approximation to
be good?
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1. Electric current I is circulating along an ideally conducting thin hoop of mass M and radius
R. The hoop is placed in vacuum and infinite volume and constrained to rotate on an axis that
passes through the conductor and center of the hoop as shown in the figure. Initially the hoop
rotates about this axis with angular velocity ~Ω0. How will its angular velocity evolve with
time? [Partial credit will be given for a solution based on dimensional analysis.]

R

I

Ω0
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2. In high energy nuclear collisions between nucleus A and B, it is conventional to specify the
center-of-mass collision energy in terms of

√
S NN , which is the energy of the collision between

one nucleon from A and one nucleon from B, assuming that both nucleons are motionless in
their parent nucleus’s rest frame. (Here nucleon denotes either a proton or a neutron.)

In reality the nucleons are not motionless when viewed from the rest frame of the nucleus,
due to their Fermi momentum. The density of nucleons in a large nucleus is about 0.16 f m3,
where 1 f m = 10−15m.

(a) Find the Fermi momentum pF for a nucleus with the above density, assuming zero tem-
perature and an equal density of protons and neutrons.

(b) At RHIC, the nominal value of
√

S NN is 200 GeV when colliding beams of nuclei having
equal energies but opposite directions. Find the range of energies about this central value
due to Fermi momenta within each nucleus aligned and anti-aligned with the collision
direction.

(c) Repeat part (b) for the LHC, where
√

S NN = 5000 GeV .

For this problem, you can take the rest energy of a nucleon to be MNc2 ≈ 1000 GeV . You may
find it convenient to use ~c ≈ 0.2 GeV · f m.
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3.

(a) An experiment requires a flat electrode surface to stay free of adsorbed molecules for a
duration τ (the maximum allowed adsorption coverage is f < 10%). Assuming that each
incident molecule sticks to the surface, estimate the maximum allowed background air
pressure P in terms of τ, f , the temperature T , and the typical mass M and diatemeter d
of an adsorbed molecule.

(b) Estimate the order-of-magnitude numerical value of P from part (a) at room temperature,
for τ ∼ 1 hour.
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4.

(a) In solid metals the effective mass of a conduction electron can be different from that of a
bare mass electron. Explain the concept of effective mass, and describe why the effective
and bare electron masses may be different.

(b) Describe an experiment to determine the effective mass of an electron in metals. It can
either be a direct experiment or a combination of a few measurements of other properties
which allows a derivation of the effective electron mass

(c) Suppose you had access to a beam of neutrons at a neutron scattering facility, and all its
relevant equipment. Explain how you would go about measuring the mass of the neutron.
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5. We have an ideal gas composed of N He atoms contained in a vessel of volume V . The vessel
is a cube of volume V = L3, where L is the length of the cube. Consider the limit of low
temperature (T → 0) and assume that the system is an ideal gas at all temperatures.

(a) Consider cyclic boundary conditions for the wavefunctions of momentum and energy to
obtain the energy states E. [In cyclic boundary conditions the wave functions can be
viewed as defined in an infinite volume, but are required to be unchanged by translation
through a distance L in the x or y directions]. Calculate the density of states as a function
of energy.

(b) The He3 isotope has two protons and one neutron in its nucleus. He3 atoms have spin
one-half.

(i) What is the value of the chemical potential µ at T = 0?

(ii) Assume that the temperature is raised slightly so that T remains small. The total
energy of the He3 ideal gas is written as U(T ) = U(0) + F(T ). Use phenomenology
(qualitative) considerations to show that the leading term in F(T ) is proportional to T 2.

(c) The He4 isotope has two protons and two neutrons in its nucleus. He4 atoms have zero
spin.

(iii) Show that the chemical potential µ is negative.

(iv) Obtain an expression for the temperature at which the value of the chemical potential
comes very close to zero (µ→ 0).
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6. Assume a toy model for a spherical galaxy in which the mass of the dark matter is much
larger than that of the visible matter Mdm � Mvisible. Assume the dark matter is spherically
symmetrically distributed (with unknown density distribution) in a sphere of radius Rdm =

150 kpc (1 kpc = 3 × 1019 m). Gas clouds are observed to orbit inside the galaxy at various
radii r < Rdm. The orbital velocity of these gas clouds is observed to be roughly constant for
r & 10 kpc with v ∼ 220 km/s, as shown by the solid line in the second figure.

Rdm

r

galaxy

gas cloud orbital

velocity (km/s)

r(kpc)

10 150

220

(a) Use the observation of constant gas cloud orbital velocities at r & 10 kpc to deduce the
density distribution of dark matter as a function of radius ρ(r).

(b) Estimate the total amount of dark matter in this galaxy. Express your answer in solar
masses (1 Msol = 2 × 1030 kg).

(c) The visible matter in this galaxy, Mvisible ∼ 5 × 1011 Msol, is concentrated at r . 10 kpc.
Explain qualitatively how this accounts for the rotation curve behavior at r . 10 kpc.

(d) It is believed that the dark matter in galaxies cannot be dominantly composed of particles
of the Standard Model. Why?
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